精英家教网 > 初中数学 > 题目详情
已知锐角△ABC中,sinA=
2
2
,cotB=
3
3
,则∠C=
 
分析:根据特殊角的三角函数值,可直接求出∠A,∠B的度数,然后再根据三角形内角和定理解得即可.
解答:解:在锐角△ABC中,
∵sinA=
2
2

∴∠A=45°,
又∵cotB=
3
3

∴∠B=60°,
又∵∠A+∠B+∠C=180°,
∴∠C=180°-∠A-∠B=180°-45°-60°=75°,
故答案为75°.
点评:本题考查了特殊角的三角函数值和三角形内角和定理,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.解题时牢记三角函数值是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圆半径为R,则
a
sinA
=
b
sinB
=
c
sinC
=2R.
证明:连接CO并延长交⊙O于点D,连接DB,则∠D=∠A.
因为CD是⊙O的直径,所以∠DBC=90°,
在Rt△DBC中,sin∠D=
BC
DC
=
a
2R

所以sinA=
a
2R
,即
a
sinA
=2R,
同理:
b
sinB
=2R,
c
sinC
=2R,
a
sinA
=
b
sinB
=
c
sinC
=2R,
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
(1)前面阅读材料中省略了“
b
sinB
=2R,
c
sinC
=2R”的证明过程,请你把“
b
sinB
=2R”的证明过程补写出来.
(2)直接运用阅读材料中命题的结论解题,已知锐角△ABC中,BC=
3
,CA=
2
,∠A=60°,求△ABC的外接圆半径R及∠C.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知锐角△ABC中,AD⊥BC于D,∠B=45°,DC=1,且S△ABC=3,则AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知锐角△ABC中,BC=30,BC边上的高h=20
(1)如图1,△ABC的内接正方形的两顶点在BC上,另两顶点分别在AC,AB上,求这个正方形的面积;
(2)如图2,点M在线段AB上(不同于A,B),MN∥BC交AC于N,以MN为边向下作矩形MNPQ,且满足MQ=2MN,设MN=x,矩形MNPQ和△ABC的公共部分的面积为y,直接写出y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知锐角△ABC中,AC=15,AB=13,高AD=12,则边BC的长为
14
14

查看答案和解析>>

同步练习册答案