(10分)如图,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.
【小题1】(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;
【小题2】(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
【小题1】(1) AE⊥CE,由△ADE≌△CDG可证;
【小题2】(2)(1)的结论仍然成立,证明方法同(1)
解析考点:旋转的性质;全等三角形的判定与性质;正方形的性质。
分析:
(1)观察图形,AE、CG的数量关系可能是相等,下面着手证明.由于四边形ABCD、DEFG都是正方形,由SAS易证得△ADE≌△CDG,则AE=GC;
(2)(1)中的结论仍然成立,参照(1)题的解题方法,可由SAS证得△ADE≌△CDG,得AE=GC;
解答:
(1)结论为:AE=GC。理由如下:
在正方形ABCD与正方形DEFG中,
AD=DC,∠ADE=∠CDG=90°,DE=DG,
∴△ADE≌△CDG,
∴AE=GC。
(2)(1)中的结论仍然成立,理由如下:
在正方形ABCD和正方形DEFG中,
AD=DC,DE=DG,∠ADC=∠EDG=90°,
∴∠1=∠2=90°-∠3;
∴△ADE≌△CDG,
∴AE=GC。
点评:本题主要考查旋转的性质以及全等三角形的判定和性质。需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变。
科目:初中数学 来源: 题型:
(本题满分10分)如图,已知,以为直径,为圆心的半圆交于点,点为弧CF的中点,连接交于点,为△ABC的角平分线,且,垂足为点.
(1)求证:是半圆的切线;
(2)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分10分)
如图,已知OA⊥OB,OA=8,OB=6,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)求证:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?并求出此时点C到OE的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届浙江省杭州市九年级第一次中考模拟考试数学卷 题型:选择题
(本题满分10分)如图,已知,以为直径,为圆心的半圆交于点,点为弧CF的中点,连接交于点,为△ABC的角平分线,且,垂足为点. [来源:]
(1)求证:是半圆的切线;
(2)若,,求的长.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(山东聊城卷)数学 题型:解答题
(11·柳州)(本题满分10分)
如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE=时,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com