【题目】如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,那么下列结论:①△BDF和△CEF都是等腰三角形;②F为DE中点;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有( )
A.①③B.①②③C.①②D.①④
【答案】A
【解析】
由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质逐项分析可得解.
∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵△ABC中,∠ABC与∠ACB的平分线交于点F,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF,EF=EC,
即△BDF和△CEF都是等腰三角形;
故①正确;
∵BD与CE无法判定相等,
∴DF与EF无法判定相等,
故②错误;
∴△ADE的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC;
故③正确;
∵∠ABC不一定等于∠ACB,
∴∠FBC不一定等于∠FCB,
∴BF与CF不一定相等,
故④错误.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。
(1)求证:四边形CMAN是平行四边形。
(2)已知DE=4,FN=3,求BN的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是( )
A.∠B=∠CB.∠BDA=∠CDAC.AB=ACD.BD=CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)、(4,0),点C在第一象限内,∠BAC=90°,AB=2AC,函数y=(x>0)的图象经过点C,将△ABC沿x轴的正方向向右平移m个单位长度,使点A恰好落在函数y=(x>0)的图象上,则m的值为( )
A. B. C. 3 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,点D在BC边上,点E在AB的延长线上,将DE绕D点顺时针旋转120°得到DF.
(1)如图1,若点F恰好落在AC边上,求证:点D是BC的中点;
(2)如图2,在(1)的条件下,若=45°,连接AD,求证:;
(3)如图3,若,连CF,当CF取最小值时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.
(1)求k的值;
(2)用含m的代数式表示CD的长;
(3)求S与m之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)在一次消防演习中,消防员架起一架25米长的云梯AB,如图斜靠在一面墙上,梯子底端B离墙角C的距离为7米。
(1)求这个梯子的顶端距地面的高度AC是多少?
(2)如果消防员接到命令,按要求将梯子底部在水平方向滑 动后停在DE的位置上(云梯长度不变),测得BD长为8米,那么云梯的顶部在下滑了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E 是 BC 的中点,DE 平分∠ADC.
(1)如图 1,若∠B=∠C=90°,求证:AE 平分∠DAB;
(2)如图 2,若 DE⊥AE,求证:AD=AB+CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com