【题目】作图题:如图在矩形ABCD中,已知AD=10,AB=6,用直尺和圆规在AD上找一点E(保留作图痕迹),使EC平分∠BED,并求出tan∠BEC的值.
【答案】作图见解析,3
【解析】
根据角平分线的性质,要使EC平分∠BED,则C到BE的距离一定等于CD,故以C点为圆心,CD长为半径做圆C,然后过点B做圆C的切线并延长,与AD的交点即为点E,然后利用勾股定理,设ED=EG=,可以求得ED的长,而∠BEC=∠DEC,在直角中,即可求得tan∠BEC的值.
解:以点C为圆心,CD长为半径画圆,作的垂直平分线,然后作以为直径的圆,与圆交于点,即为圆的切线,并延长与AD相交,交点即为所求点E,
由作图可知,ED=EG,CG=CD=6,CGBE,而BC=10,
在Rt中,,
设ED=EG=,则AE=,
在Rt中,有,即:,
解得:,即ED=EG=2,
∵ EC为角平分线,则∠BEC=∠DEC,
在中,tan∠BEC=tan∠DEC=.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O的切线.
(1)求证:∠CDE= ∠BAC;
(2)若AB=3BD,CE=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂用天时间生产一款新型节能产品,每天生产的该产品被某网店以每件元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第天的生产成本(元/件)与(天)之间的关系如图所示,第天该产品的生产量(件)与(天)满足关系式
第天,该厂生产该产品的利润是 元;
设第天该厂生产该产品的利润为元.
①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?
②在生产该产品的过程中,当天利润不低于元的共有多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37600名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好不在同一组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+bx+c(a≠0)的顶点为A(s,t)(其中s≠0).
(1)若抛物线经过(2,7)和(-3,37)两点,且s=1.
①求抛物线的解析式;
②若n>1,设点M(n,y1),N(n+1,y2)在抛物线上,比较y1,y2的大小关系,并说明理由;
(2)若a=2,c=-2,直线y=2x+m与抛物线y=ax2+bx+c的交于点P和点Q,点P的横坐标为h,点Q的横坐标为h+3,求出b和h的函数关系式;
(3)若点A在抛物线y=上,且2≤s<3时,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标是(﹣1,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'BC.若反比例函数y=的图象恰好经过A'B的中点D,则k的值是( )
A.19B.16.5C.14D.11.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点,分别在轴、轴上,对角线轴,反比例函数的图象经过矩形对角线的交点,若点,,则的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.
求下列事件的概率:
(1)搅匀后从中任意摸出1个球,恰好是白球;
(2)搅匀后从中任意摸出2个球,2个都是白球.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com