精英家教网 > 初中数学 > 题目详情
10.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD+BC=AB,以AB为直径作⊙O,求证:CD是⊙O的切线.

分析 首先过点O作OE⊥CD于点E,易证得OE是梯形ABCD的中位线,可得OE=$\frac{1}{2}$(AD+BC),又由AD+BC=AB,以AB为直径作⊙O.可得OE等于⊙O的半径.

解答 证明:过点O作OE⊥CD于点E,
∵在梯形ABCD中,AD∥BC,∠C=90°,
∴AD⊥CD,BC⊥CD,
∴AD∥OE∥BC,
∵OA=OB,
∴OE是梯形ABCD的中位线,
∴OE=$\frac{1}{2}$(AD+BC),
∵AD+BC=AB,
∴OE=$\frac{1}{2}$AB,
∵以AB为直径作⊙O.
∴直线CD是⊙O的切线.

点评 此题考查了切线的判定以及梯形的中位线的性质.此题难度适中,注意辅助线的作法,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.解下列各题:
(1)计算:sin223°-$\frac{1}{{2}^{2}}$+$\sqrt{27}$-$\sqrt{(si{n}^{2}30°-tan45°)^{2}}$+sin267°
(2)当x=4cos30°-(-1)0、y=2tan60°时,求(1-$\frac{2x}{x+y}$)÷$\frac{{x}^{2}-2xy+{y}^{2}}{3x+3y}$+$\frac{{x}^{2}+xy}{{x}^{2}-{y}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:
(1)5(x-2)=3(2-x)+8
(2)小明在解一道一元一次方程$\frac{0.2x-0.1}{0.4}$=$\frac{0.1x+0.32}{0.03}$-1.过程如下:
第一步:将原方程化为$\frac{2x-1}{4}$=$\frac{10x+32}{3}$-1
第二步:去分母…
①请你说明第一步和第二步变化过程的依据分别是分数的基本性质;等式的基本性质.
②请把以上解方程过程补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知△ABC中,∠A=40°,∠B=50°,那么△ABC是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,FC,下列结论:
①∠BAG=30°
②△GFC是等腰三角形
③AG∥CF
④S△FGC=3,其中正确结论是②③.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:($\frac{1}{m+1}$+$\frac{1}{m-1}$)÷$\frac{{m}^{2}-m}{{m}^{2}-2m+1}$,其中m=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,抛物线l与坐标轴的交点为A(-1,0),B(4,0),C(0,2),四边形DEFG是正方形,且点D,E在x轴上,点F,G在抛物线上,则正方形DEFG的面积为57±8$\sqrt{41}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:($\frac{1}{2}$)-1-4sin60°+$\sqrt{27}$+(3-π)0
(2)化简:($\frac{{a}^{2}-{b}^{2}}{{a}^{2}-2ab+{b}^{2}}$+$\frac{a}{b-a}$)÷$\frac{{b}^{2}}{{a}^{2}-ab}$.

查看答案和解析>>

同步练习册答案