分析 由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
解答 解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最小值5,
可得:(1-h)2+1=5,
解得:h=-1或h=3(舍);
②若1≤x≤3<h,当x=3时,y取得最小值5,
可得:(3-h)2+1=5,
解得:h=5或h=1(舍).
综上,h的值为-1或5,
故答案为-1或5.
点评 本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ②③⑤ | C. | ②④⑤ | D. | ②③④⑤ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com