【题目】二次函数(,,是常数,)的自变量x与函数值y的部分对应值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | 3 | 3 | … |
且当时,与其对应的函数值.有下列结论:①;②3是关于的方程的一个根;③.其中,正确结论的个数是( )
A.0B.1C.2/span>D.3
【答案】C
【解析】
通过表格确定函数的对称性、函数和坐标轴的交点等基本特征,进而求解.
解:当时,与其对应的函数值,结合题意可知a>0
当x=0时,c=3,
当x=3时,9a+3b+c=3,
∴3a+b=0,∴b=-3a
∴b<0
∴abc<0,
①正确;
可以化为ax2+(-3a-1)x+3=0
将x=3代入方程可得9a+3(-3a-1)+3=0
∴3是关于的方程的一个根
②正确;
抛物线的解析式为y=ax2-3ax+3
n=a+3a+3=4a+3,m=a-3a+3=-2a+3
m+n=2a+6
∵a>0,∴m+n>6
当x=式,y=a-a+3=-a+3
∵当时,与其对应的函数值
∴-a+3<0
∴a>
∴m+n>
③错误;
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)
(1)直接写出∠ACB的大小;
(2)求这座山的高度CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB=BC,延长AC到点D,使得CD=CB,连接BD交⊙O于点E,过点E做BC的平行线交CD于点F.
(1)求证:AE=DE.
(2)求证:EF为⊙O的切线;
(3)若AB=5,BE=3,求弦AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了优化环境,将对某一小区环境进行绿化,现有甲、乙两家绿化公司进行了投标,各自推出了绿化收费方案如下:甲公司绿化费用(元) 与绿化面积(平方米)是一次函数关系,如图所示。
乙公司:绿化面积不超过1000平方米时,统一收取费用5000元;绿化面积超过1000平方米时,超过部分每平方米收取3元.
(1)求甲、乙公司绿化费用(元)与绿化面积(平方米)的函数表达式;
(2)如果该小区目前的绿化面积是1500平方米,试通过计算说明:选择哪家公司的绿化费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个矩形纸片放置在平面直角坐标系中,点,点,点E,F分别在边,上.沿着折叠该纸片,使得点A落在边上,对应点为,如图①.再沿折叠,这时点E恰好与点C重合,如图②.
(Ⅰ)求点C的坐标;
(Ⅱ)将该矩形纸片展开,再折叠该矩形纸片,使点O与点F重合,折痕与相交于点P,展开矩形纸片,如图③.
①求的大小;
②点M,N分别为,上的动点,当取得最小值时,求点N的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:再探平行四边形的性质
问题情境:
学完平行四边形的有关知识后,同学们开展了再探平行四边形性质的数学活动,以下是“希望小组”得到的一个性质:
如图1,已知平行四边形中,,于点,垂直于点,则.
问题解决:
(1)如图2,当时,还成立吗?证明你发现的结论;
(2)如图2,连接和,若.求的度数;
(3)如图3,若,,点是射线上一点,且.则_________.(用含的三角函数表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,中,,.动点在的边上按的路线匀速移动,当点到达点时停止移动;动点以的速度在的边上按的路线匀速移动,当点到达点时停止移动.已知点、点同时开始移动,同时停止移动(即同时到达各自的终止位置).设动点移动的时间为,的面积为,与的函数关系如图②所示.
(1)图①中 ,图②中 ;
(2)求与的函数表达式;
(3)当为何值时,为等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com