Èçͼ£¬¾ØÐÎABCDÖУ¬AB=1£¬BC=2£¬BCÔÚxÖáÉÏ£¬Ò»´Îº¯Êýy=kx-2µÄͼÏó¾­¹ýµãA¡¢C£¬²¢ÓëyÖá½»ÓÚµãE£®·´±ÈÀýº¯Êýy=
m
x
µÄͼÏó¾­¹ýµãA£¬²¢ÇÒÓëÒ»´Îº¯Êýy=kx-2µÄͼÏó½»ÓÚÁíÒ»µãF£¨-2£¬n£©£®Á¬½áFO²¢ÑÓ³¤½»·´±ÈÀýº¯Êýy=
m
x
µÄͼÏóÓÚµãG£¬Á¬½áAG£® 
 £¨1£©µãCµÄ×ø±êÊÇ£¨
 
£¬
 
£©£»
£¨2£©ÇóÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©¸ù¾ÝͼÏó£¬Ð´³öµ±Ò»´Îº¯ÊýµÄÖµ´óÓÚ·´±ÈÀýº¯ÊýµÄֵʱ£¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨4£©Çó¡÷AFGµÄÃæ»ý£®
¿¼µã£º·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌâ
רÌ⣺¼ÆËãÌâ
·ÖÎö£º£¨1£©ÏÈÀûÓÃxÖáÉϵãµÄ×ø±êÌØÕ÷µÃµ½Cµã×ø±êΪ£¨
2
k
£¬0£©£¬ÔÙ¸ù¾ÝAB=1£¬BC=2¿É±íʾ³öAµã×ø±êΪ£¨£¨
2
k
+2£¬1£©£¬È»ºó°ÑA£¨
2
k
+2£¬1£©´úÈëy=kx-2¿É¼ÆËã³ök=
1
2
£¬´Ó¶øÈ·¶¨Cµã×ø±ê£»
£¨2£©ÓÉ£¨1£©µÃµ½k=
1
2
£¬ÔòÒ»´Îº¯Êý½âÎöʽΪy=
1
2
x-2£¬Í¬Ê±µÃµ½µãAµÄ×ø±êΪ£¨6£¬1£©£¬ÔòÀûÓ÷´±ÈÀýº¯ÊýͼÏóɽ¹ÛµãµÄ×ø±êÌØÕ÷Ò×µÃm=6£¬´Ó¶ø¿ÉÈ·¶¨·´±ÈÀýº¯Êý½âÎöʽ£»
£¨3£©¹Û²ìº¯ÊýͼÏóµÃµ½µ±-2£¼x£¼0»òx£¾6ʱ£¬Ò»´Îº¯ÊýͼÏó¶¼ÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ·½£¬¼´Ò»´Îº¯ÊýµÄÖµ´óÓÚ·´±ÈÀýº¯ÊýµÄÖµ£»
£¨4£©×÷GH¡ÍxÖáÓÚH£¬Ïȸù¾Ý·´±ÈÀýº¯ÊýͼÏóµÄÐÔÖÊÈ·¶¨Gµã×ø±ê£¬È»ºóÀûÓÃS¡÷AFG=S¡÷FOC+S¡÷OGH+SÌÝÐÎAGHB-S¡÷ABC½øÐмÆË㣮
½â´ð£º½â£º£¨1£©°Ñx=0´úÈëy=kx-2µÃkx-2=0£¬½âµÃx=
2
k
£¬ÔòCµã×ø±êΪ£¨
2
k
£¬0£©£¬
¡ß¾ØÐÎABCDÖУ¬AB=1£¬BC=2£¬
¡àAµã×ø±êΪ£¨£¨
2
k
+2£¬1£©£¬
°ÑA£¨
2
k
+2£¬1£©´úÈëy=kx-2µÃAµã×ø±êΪk£¨
2
k
+2£©-2=1£¬½âµÃk=
1
2
£¬
¡àCµã×ø±êΪ£¨4£¬0£©£»
¹Ê´ð°¸Îª4£¬0£»
£¨2£©¡ßk=
1
2
£¬
¡àÒ»´Îº¯Êý½âÎöʽΪy=
1
2
x-2£¬µãAµÄ×ø±êΪ£¨6£¬1£©£¬
¡àm=6¡Á1=6£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=
6
x
£»
£¨3£©½â·½³Ì×é
y=
1
2
x-2
y=
6
x
µÃ
x=-2
y=-3
»ò
x=6
y=1
£¬ÔòFµãµÄ×ø±êΪ£¨-2£¬-3£©£¬
ËùÒÔµ±-2£¼x£¼0»òx£¾6ʱ£¬Ò»´Îº¯ÊýµÄÖµ´óÓÚ·´±ÈÀýº¯ÊýµÄÖµ£»
£¨4£©×÷GH¡ÍxÖáÓÚH£¬Èçͼ£¬
¡ßGµãÓëFµã¹ØÓÚÔ­µã¶Ô³Æ£¬
¡àGµã×ø±êΪ£¨2£¬3£©£¬
¡àS¡÷AFG=S¡÷FOC+SËıßÐÎAGOC
=S¡÷FOC+S¡÷OGH+SÌÝÐÎAGHB-S¡÷ABC
=
1
2
¡Á4¡Á3+
1
2
¡Á2¡Á3+
1
2
£¨1+3£©¡Á£¨6-2£©-
1
2
¡Á2¡Á1
=16£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌ⣺Çó·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µã×ø±ê£¬°ÑÁ½¸öº¯Êý¹ØϵʽÁªÁ¢³É·½³Ì×éÇó½â£¬Èô·½³Ì×éÓнâÔòÁ½ÕßÓн»µã£¬·½³Ì×éÎ޽⣬ÔòÁ½ÕßÎÞ½»µã£®Ò²¿¼²éÁ˹۲캯ÊýͼÏóµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢x2•x3=x6
B¡¢£¨-2xy£©2=2x2y2
C¡¢x•x3=x3
D¡¢£¨-2ax£©2=4a2x2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãPÊÇÁâÐÎABCDµÄ¶Ô½ÇÏßBDÉÏÒ»µã£®Á¬½áCP²¢ÑÓ³¤£¬½»ADÓÚµãE£¬½»BAµÄÑÓ³¤ÏßÓÚµãF£®
£¨1£©ÇóÖ¤£º¡ÏDCP=¡ÏDAP£»
£¨2£©ÈôAB=2£¬DP£ºPB=1£º2£®ÇÒPA¡ÍBF£®
¢ÙÇóÖ¤£ºPA=
1
2
PB£»  ¢ÚÇó¶Ô½ÇÏßBDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ôڵȱߡ÷ABCÖУ¬AB=2£¬DÊÇBCÉÏÒ»¶¯µã£¬¹ýµãD×÷DE¡ÍACÓÚµãE£¬ÇóAD+DEµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â·½³Ì 
£¨1£©4£¨3x-2£©2=9£¨2x-3£©2
£¨2£©3x2-10x+6=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª|a|+|b2+2015|=2015£¬Çóa+bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy=2x2+nÓëÖ±Ïßy=2x-1½»Óڵ㣨m£¬3£©£®
£¨1£©ÇómºÍnµÄÖµ£»
£¨2£©ÇóÅ×ÎïÏßy=2x2+nµÄ¶¥µã×ø±êºÍ¶Ô³ÆÖ᣻
£¨3£©µ±xÈ¡ºÎֵʱ£¬¶þ´Îº¯Êýy=2x2+nÖÐyËæxµÄÔö´ó¶ø¼õС£»
£¨4£©º¯Êýy=2x2+nÓëÖ±Ïßy=2x-1µÄͼÏóÊÇ·ñ»¹ÓÐÆäËû½»µã£¿ÈôÓУ¬ÇëÇó³öÀ´£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»Ôª¶þ´Î·½³Ìx2+6x-m2=0
£¨1£©ÇóÖ¤£ºÎÞÂÛmÈ¡ºÎÖµ£¬Ô­·½³Ì×ÜÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
£¨2£©Èôx1ºÍx2Ϊԭ·½³ÌµÄÁ½¸ö¸ù£¬ÇÒx1-2x2=12£®ÇómµÄÖµºÍ´ËʱµÄ¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÅ×ÎïÏßE£ºy=x2-4µÄͼÏóÓëÖ±Ïßl£ºy=-2½»ÓÚA¡¢CÁ½µã£¬BΪÅ×ÎïÏßy=x2-4µÄ¶¥µã£¬Å×ÎïÏßFÓëE¹ØÓÚxÖá¶Ô³Æ£®
£¨1£©ÇóÅ×ÎïÏßFµÄ¹Øϵʽ£»
£¨2£©xÖáÏ·½µÄFÉÏÊÇ·ñ´æÔÚÒ»µãD£¬Ê¹ÒÔA£¬B£¬C£¬DΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇóµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©½«Å×ÎïÏßEµÄ¹Øϵʽ¸ÄΪy=ax2+c£¨a£¾0£¬c¡Ù0£©£¬Ö±ÏßlµÄ¹Øϵʽ¸ÄΪy=-
c
2
£¬ÊÔ̽Ë÷ÎÊÌ⣨2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸