精英家教网 > 初中数学 > 题目详情
如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3m,同时梯子的顶端B下降至B’,那么BB’的长为
A.等于1mB.大于1mC.小于1mD.以上答案都不对
C

试题分析:由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
在直角三角形AOB中,因为OA=2,OB=7
由勾股定理得:AB=
由题意可知AB=A′B′=
又OA′=3,根据勾股定理得:OB′=
∴BB′=
故选C.
点评:勾股定理的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连结CC′交斜边于点E,CC′的延长线交BB′于点F。

(1)若AC=3,AB=4,求
(2)证明:△ACE∽△FBE;
(3)设∠ABC=,∠CAC′=,试探索满足什么关系时,△ACE与△FBE是全等三角形,并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知三角形两边长是4和7,第三边是方程的根,则第三边长是(    )
A.5B.11C.5或11D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在如下图的纸片ABCD中,∠B=120°,∠D=50°,如果将其右下角向内折出三角形PCR,恰使CP//AB,RC//AD,那么∠C=______

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

观察以下图形,回答问题:  
   
(1)图②有    个三角形;图③有___ _ 个三角形;图④有___  _个三角形;……
猜测第七个图形中共有  个三角形;
(2)按上面的方法继续下去,第个图形中有      个三角形(用的代数式表示结论).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在刚做好的门框架上,工人师傅为了避免门框变形,在矩形的框架上斜钉一根木条,这是利用           原理.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,ΔABC中,∠ABC和∠ACB的角平分线交于一点O,如果∠A=x,∠BOC=y,则写出y与x的关系式是        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE—ED—DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:

①当0<t≤5时,y=t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=
④当t=秒时,△ABE∽△QBP;
其中正确的是(   )
A.①②B.①③④C.③④D.①②④

查看答案和解析>>

同步练习册答案