精英家教网 > 初中数学 > 题目详情
3.观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有8065个三角形.

分析 结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.

解答 解:第1个图形中一共有1个三角形,
第2个图形中一共有1+4=5个三角形,
第3个图形中一共有1+4+4=9个三角形,

第n个图形中三角形的个数是1+4(n-1)=4n-3,
当n=2017时,4n-3=8065,
故答案为:8065.

点评 此题考查图形的变化规律,由特殊到一般的归纳方法,找出规律:后一个图形中三角形的个数总比前一个三角形的个数多4解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.无限小数是无理数B.$\sqrt{16}$的平方根是±4
C.-6是(-6)2的一个算术平方根D.-5的立方根是$\root{3}{-5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列各个等式的规律:
第一个等式:$\frac{{{2^2}-{1^2}-1}}{2}$=1,第二个等式:$\frac{{{3^2}-{2^2}-1}}{2}$=2,第三个等式:$\frac{{{4^2}-{3^2}-1}}{2}$=3…
请用上述等式反映出的规律解决下列问题:
(1)直接写出第四个等式;
(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠2=65°,则∠1的度数是(  )
A.65°B.25°C.35°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.化简$\sqrt{45}$的结果为3$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:
(1)小亮在家停留了2分钟.
(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.
(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n-m=30分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.直线l的解析式为y=-2x+2,分别交x轴、y轴于点A,B.
(1)写出A,B两点的坐标,并画出直线l的图象;
(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=-2x+6.
(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(-2,0),B(2,2),与y轴交于点C.
(1)求抛物线y=ax2+bx+2的函数表达式;
(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;
(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在平面直角坐标系中,O为原点,抛物线y=-x2+3x的对称轴l交x轴于点M,直线y=mx-2m(m<0)与该抛物线x轴上方的部分交于点A,与l交于点B,过点A作AN⊥x轴,垂足为N,则下列线段中,长度随线段ON长度的增大而增大的是(  )
A.ANB.MNC.BMD.AB

查看答案和解析>>

同步练习册答案