分析 根据第一个正方形可以得到整点个数为4,第二个正方形可知除顶点外每条边上的整点个数为1,故第二个正方形四条边上的整点个数为:4×1+4,同理可知,第三个正方形四条边上的整点个数为:4×2+4,从而可以得到第12个正方形四条边上的整点个数为.
解答 解:根据题意可得,第一个正方形四条边上的整点个数为:4;
第二个正方形四条边上的整点个数为:4×1+4=8;
第三个正方形四条边上的整点个数为:4×2+4=12;
由此可得,由里向外第12个正方形四条边上的整点个数为:4×11+4=48.
故答案为:48.
点评 本题考查规律性:点的坐标,解题的关键是观察各个正方形,能发现正方形四条边上的整点数的规律.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源:2016-2017学年浙江省瑞安市五校联考八年级下学期第一次月考数学试卷(解析版) 题型:单选题
设n为正整数,且n<<n+1,则n的值为( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com