【题目】如图, 是直线上的两点,直线l1、l2的初始位置与直线重合将l1绕点顺时针以每秒10°的速度旋转,将l2绕点B逆时针以每秒5°的速度旋转,且两条直线从重合位置同时开始旋转,设旋转时间为秒(是正整数).当时,设的交点为;当时,设的交点为;当时设的交点为……那么当时, 相交所得的钝角是__________.当落在上方时, 的最小值是__________.
科目:初中数学 来源: 题型:
【题目】再读教材:宽与长的比是(约为0.618)的矩形叫作黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形(提示:).
第一步:在矩形纸片一端 ,利用图1的方法折出一个正方形,然后把纸片展平;
第二步:如图2,把这个正方形折成两个相等的矩形,再把纸片展平;
图1 图2
第三步:折出内侧矩形的对角线,并把折到图3中所示的处;
第四步:展平纸片,按照所得的点折出,使,则图4中就会出现黄金矩形.
图3 图4
(1)在图3中_________ (保留根号);
(2)如图3,则四边形的形状是_________;
(3)在图4中黄金矩形是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,与轴交于点C,与轴的正半轴交于点K,过点作轴交抛物线于另一点B,点在轴的负半轴上,连结交轴于点A,若.
(1)用含的代数式表示的长;
(2)当时,判断点是否落在抛物线上,并说明理由;
(3)过点作轴交轴于点延长至,使得连结交轴于点连结AE交轴于点若的面积与的面积之比为则求出抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:
(1)当t为何值时,P,Q两点同时停止运动;
(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;
(3)当△PQB为等腰三角形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与直线交于点,直线与轴、轴分别交于点、点.
(1)求直线的关系式;
(2)若与轴平行的直线与直线分别交于点、点,则的面积为_____(直接填空);
(3)在(2)的情况下,把沿着过原点的直线翻折,当点落在直线上时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年3月15日,我国“两会”落下帷幕.13天时间里,来自各地的5000余名代表、委员聚于国家政治中心,共议国家发展大计.某校初三(3)班张老师为了了解同学们对“两会”知识的知晓情况,进行了一次小测试,测试满分100分.其中
A组同学的测试成绩分别为:91 91 86 93 85 89 89 88 87 91
B组同学的测试成绩分别为:88 97 88 85 86 94 84 83 98 87
根据以上数据,回答下列问题:
(1)完成下表:
组别 | 平均数 | 中位数 | 众数 | 方差 |
A组 | 89 | 89 | b | c |
B组 | 89 | a | 88 | 26.2 |
其中a= ,b= ,c= ,
(2)张老师将B组同学的测试成绩分成四组并绘制成如图所示频数分布直方图(不完整),请补全;
(3)根据以上分析,你认为 组(填“A”或“B”)的同学对今年“两会”知识的知晓情况更好一些,请写出你这样判断的理由(至少写两条):① ② .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形中,对角线,,动点、分别从点、同时出发,运动速度都是,点由向运动;点由向运动,当到达点时,,两点运动停止,设时间为秒.连接,,.
(1)当为何值时,;
(2)设的面积为,请写出与的函数关系式;
(3)当为何值时,的面积是四边形面积的;
(4)是否存在值,使得线段经过的中点;若存在,求出值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的抛物线对称轴是直线x=1,与x轴有两个交点,与y轴交点坐标是(0,3),把它向下平移2个单位后,得到新的抛物线解析式是 y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,判断正确的有( )
A. ②③④B. ①②③C. ②③D. ①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com