精英家教网 > 初中数学 > 题目详情
(2010•菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】分析:(1)根据C点的坐标可确定直线AD的解析式,进而可求出B点坐标,将B、C、O三点坐标代入抛物线中,即可求得此二次函数的解析式;
(2)此题的关键是求出P点的坐标;△PON中,ON的长为定值,若△PON的面积最大,那么P点离ON的距离最远,即P点为抛物线的顶点,根据(1)所得的抛物线解析式即可求得P点的坐标,进而可求出α的正切值;
(3)设出点P的横坐标,根据抛物线的解析式可表示出P点的纵坐标;根据直线AD和抛物线的解析式可求出A、N的坐标;以ON为底,P点纵坐标为高可得到△OPN的面积,以OA为底,P点横坐标为高可得到△OAP的面积,根据题目给出的△POA和△PON的面积关系即可求出P点的横坐标,进而可求出P点的坐标.
解答:解:(1)将点C(2,2)代入直线y=kx+4,可得k=-1
所以直线的解析式为y=-x+4
当x=1时,y=3,
所以B点的坐标为(1,3)
将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,
可得
解得
所以所求的抛物线为y=-2x2+5x.

(2)因为ON的长是一定值,
所以当点P为抛物线的顶点时,△PON的面积最大,
又该抛物线的顶点坐标为(),此时tan∠PON=

(3)存在;
把x=0代入直线y=-x+4得y=4,所以点A(0,4)
把y=0代入抛物线y=-2x2+5x
得x=0或x=,所以点N(,0)
设动点P坐标为(x,y),
其中y=-2x2+5x (0<x<
则得:S△OAP=|OA|•x=2x
S△ONP=|ON|•y=•(-2x2+5x)=(-2x2+5x)
由S△OAP=S△ONP
即2x=(-2x2+5x)
解得x=0或x=1,舍去x=0
得x=1,由此得y=3
所以得点P存在,其坐标为(1,3).
点评:此题考查了一次函数与二次函数解析式的确定、函数图象与坐标轴交点坐标的求法、图形面积的求法等知识,主要考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2011年广东省广州市初中毕业班数学科综合练习卷(解析版) 题型:解答题

(2010•菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年广东省茂名市化州市文楼镇第一中学中考数学二模试卷(解析版) 题型:选择题

(2010•菏泽)如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年吉林省通化市中考数学试卷(解析版) 题型:解答题

(2010•菏泽)如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.

查看答案和解析>>

同步练习册答案