精英家教网 > 初中数学 > 题目详情

⊙O的半径为2,点A、B、C在⊙O上,∠ABC=60°,则∠ABC 所对的弧长为________.


分析:根据弧长的计算公式,求得所对的圆心角∠AOC的度数,代入公式即可求解.
解答:解:连接OA,OC.
∵∠ABC=60°
∴∠AOC=2∠ABC=120°
∴∠ABC 所对的弧长为=
故答案是:
点评:本题主要考查了弧长的计算公式,正确求得弧所对的圆周角的度数是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:⊙O的半径为3cm,点P和圆心O的距离为6cm,经过点P和⊙O的两条切线,求这两条切线的夹角及切线长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

1、如果⊙O的半径为r,点P到圆心O的距离为d,那么:①点P在⊙O外,则
d>r
;②
点P在⊙O上
,则d=r;③
点P在⊙O内
,则d<r.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网⊙O的半径为2,点A、B、C在⊙O上,∠ABC=60°,则∠ABC 所对的弧长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离为5cm,则弦AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•咸宁)如图,在Rt△AOB中,OA=OB=3
2
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为
2
2
2
2

查看答案和解析>>

同步练习册答案