精英家教网 > 初中数学 > 题目详情

有这样一道计算题:
计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1。甲同学把x=错看成x=-,但计算结果仍正确,你说是怎么一回事?

解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3
=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3
=-2 y3
此式中没有含x字母的项,当y=-1时,原式=2与x无关。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

几何课本第三册复习题七中有这样一道几何题:以Rt△ABC的直角边AC为直径作圆,精英家教网交斜边AB于点D,过点D作圆的切线.求证:这条切线平分另一条直角边BC.(不必证明)
现将上述习题改变成如下问题,请你解答:
如图,以Rt△ABC的直角边AC为直径作⊙O,交斜边AB于点D,E为BC边的中点,连DE.
(1)判断DE是否为⊙O的切线,并证明你的结论.
(2)当AD:DB=9:16时,DE=8cm时,求⊙O的半径R.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

成书于公元一世纪的我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,题目是:
“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适马岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?

查看答案和解析>>

科目:初中数学 来源:第3章《直线与圆、圆与圆的位置关系》中考题集(23):3.1 直线与圆的位置关系(解析版) 题型:解答题

几何课本第三册复习题七中有这样一道几何题:以Rt△ABC的直角边AC为直径作圆,交斜边AB于点D,过点D作圆的切线.求证:这条切线平分另一条直角边BC.(不必证明)
现将上述习题改变成如下问题,请你解答:
如图,以Rt△ABC的直角边AC为直径作⊙O,交斜边AB于点D,E为BC边的中点,连DE.
(1)判断DE是否为⊙O的切线,并证明你的结论.
(2)当AD:DB=9:16时,DE=8cm时,求⊙O的半径R.

查看答案和解析>>

科目:初中数学 来源:第5章《中心对称图形(二)》中考题集(44):5.5 直线与圆的位置关系(解析版) 题型:解答题

几何课本第三册复习题七中有这样一道几何题:以Rt△ABC的直角边AC为直径作圆,交斜边AB于点D,过点D作圆的切线.求证:这条切线平分另一条直角边BC.(不必证明)
现将上述习题改变成如下问题,请你解答:
如图,以Rt△ABC的直角边AC为直径作⊙O,交斜边AB于点D,E为BC边的中点,连DE.
(1)判断DE是否为⊙O的切线,并证明你的结论.
(2)当AD:DB=9:16时,DE=8cm时,求⊙O的半径R.

查看答案和解析>>

科目:初中数学 来源:第24章《圆》中考题集(44):24.2 点、直线和圆的位置关系(解析版) 题型:解答题

几何课本第三册复习题七中有这样一道几何题:以Rt△ABC的直角边AC为直径作圆,交斜边AB于点D,过点D作圆的切线.求证:这条切线平分另一条直角边BC.(不必证明)
现将上述习题改变成如下问题,请你解答:
如图,以Rt△ABC的直角边AC为直径作⊙O,交斜边AB于点D,E为BC边的中点,连DE.
(1)判断DE是否为⊙O的切线,并证明你的结论.
(2)当AD:DB=9:16时,DE=8cm时,求⊙O的半径R.

查看答案和解析>>

同步练习册答案