精英家教网 > 初中数学 > 题目详情
在△ABC中,BC=5,AC=12,AB=13,在AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,则这样线段的最小值是
 
分析:过D作DF⊥AC,利用相似三角形的性质及三角形的面积公式可得出EF关于x的表达式,进而在RT△DEF中,用x表示DE,求出代数式的最小值即可求出线段的最小长度.
解答:精英家教网解:∵BC2+AC2=AB2
∴△ABC为直角三角形,
过D作DF⊥AC于F,设DF=x,则
x
5
=
AF
12

∴AF=
12
5
x,
∵S△ADE=
1
2
x•AE=
1
2
S△ABC=15,
∴AE=
30
x
,EF=
30
x
-
12
5
x,
∴DE2=DF2+EF2=x2+(
30
x
-
12
5
x)2=
169
25
x2+
900
x2
-144=(
13
5
x-
30
x
2+12≥12,
故可得DE2最小值是12,
∴DE最小值为2
3

故答案为:2
3
点评:本题考查了面积及等积变换的知识,难度较大,解答本题关键点有两点,①利用三角形的面积公式求出AE,然后表示出EF;②掌握完全平方式的非负性并能熟练运用,同学们要注意培养自己化简求最值的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥BC,CD⊥AD.
(1)在△ABC中,BC边上的高是线段
 

(2)若AB=3cm,CD=2cm,AE=4cm,则S△AEC=
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.
(1)求证:EF∥BC;
(2)若△ABD的面积是6,求四边形BDFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在△ABC中,BC=2AB=4,AD为边BC上的中线,E、F分别为BC、AB上的动点,且CE=BF,EF与AD交于点G.FH⊥AG于H
(1)①如图1,当∠B=90°时,FG
=
=
EG;GH=
2
2

②如图2,当∠B=60°时,FG
=
=
EG;GH=
1
1

③如图3,当∠B=α时,FG
=
=
EG;GH=
1
2
AD
1
2
AD

请你先填上空,再从以上三个命题中任选择一个进行证明
(2)如图4,若(1)中的点E、F分别在BC、AB的延长线上,试问(1)中的结论是否仍然成立.若成立,请证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC点E,AC的长为12cm,则△BCE的周长等于(  )

查看答案和解析>>

同步练习册答案