【题目】(阅读材料)平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+”是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3.
(1)求点A(, )的勾股值[A],
(2)若将点A向上平移3个单位,再向左平移2个单位后得到点B,请直接写出点B的坐标,并求出点B的勾股值 [B];
(3)若点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E,F,△AEF∽△ABC.
(1)求证:△AED≌△AFD;
(2)若BC=2AD,求证:四边形AEDF是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.
(1)求证:AE=CE;
(2)若BC=,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,CF平分∠ECD,HC⊥CF交直线AB于H,AG平分∠HAE交HC于G,EJ∥AG交CF于J,∠AEC=80°,则下列结论正确的有( )个.
①∠BAE+∠ECD=80°;②CG平分∠ICE;③∠AGC=140°;④∠EJC﹣∠AGH=90°.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平面直角坐标系中,A点坐标为(﹣4,4),B(﹣4,0)C(1,3),解答下列各题:
(1)按题中所给坐标在图中画出△ABC并直接写出△ABC的面积;
(2)画出△ABC先向右平移5个单位长度再向下平移3个单位长度的△A'B'C',并直接写出A',B′,C'的坐标;
(3)直接写出△ABC按照(2)问要求平移到△A'B'C'的过程中,△ABC所扫过的图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在四边形中,,、分别是、的中点,连接并延长,分别与、的延长线交于点、,证明:.
请将证明的过程填写完整:
证明:连接,取的中点,连接、.
是的中点,是的中点,
________,_______,同理:_______,_______,
,,
又,,,.
(2)运用上题方法解决下列问题:
问题一:如图2,在四边形中,与相交于点,,、分别是、的中点,连接,分别交、于点、,请判断的形状,并说明理由;
问题二:如图3,在钝角中,,点在上,、分别是、的中点,连接并延长,与的延长线交于点,连接,若,是直角三角形且,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点 D 是边 BC 上的点(与 B、C 两点不重合),过点 D作 DE∥AC,DF∥AB,分别交 AB、AC 于 E、F 两点,下列说法正确的是( )
A. 若 AD 平分∠BAC,则四边形 AEDF 是菱形
B. 若 BD=CD,则四边形 AEDF 是菱形
C. 若 AD 垂直平分 BC,则四边形 AEDF 是矩形
D. 若 AD⊥BC,则四边形 AEDF 是矩形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com