精英家教网 > 初中数学 > 题目详情

如图,已知AB是⊙O的直径,C是⊙O上一点,连结AC并延长至D,使CD=AC,连结BD,作CE⊥BD,垂足为E.
(1)线段AB与DB的大小关系为______,请证明你的结论;
(2)判断CE与⊙O的位置关系,并证明;
(3)当△CED与四边形ACEB的面积之比是1:7时,试判断△ABD的形状,并证明.

解:(1)线段AB=DB.
证明如下:
连结BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
即BC⊥AD.
又∵AC=CD,
∴BC垂直平分线段AD,
∴AB=DB;

(2)CE是⊙O的切线.
证明如下:
连结OC,
∵点O为AB的中点,点C为AD的中点,
∴OC为△ABD的中位线,
∴OC∥BD.
又∵CE⊥BD,
∴CE⊥OC,
∴CE是⊙O的切线;

(3)△ABD为等边三角形.
证明如下:
=
=
=
=
==
∵∠D=∠D,∠CED=∠BCD=90°,
∴△CED∽△BCD,
=,即=
=
在Rt△BCD中,
∵CD=BD,
∴∠CBD=30°,
∴∠D=60°,
又∵AB=DB,
∴△ABD为等边三角形.
分析:(1)首先连接BC,由AB是⊙O的直径,可得∠ACB=90°,又由AC=CD,利用三线合一的知识,即可判定AB=DB;
(2)首先连接OC,由点O为AB的中点,点C为AD的中点,根据三角形中位线的性质,可证得OC∥BD,又由CE⊥BD,即可证得CE⊥OC,即得CE与⊙O的切线;
(3)易证得△CED∽△BCD,然后由相似三角形的对应边成比例证得:CD=BD,可求得∠CBD=30°,即可得∠D=60°,则可证得△ABD是等边三角形.
点评:此题考查了切线的判定与性质、等腰三角形的性质、等边三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案