A. | 4$\sqrt{2}$ | B. | 4$\sqrt{3}$ | C. | 4$\sqrt{6}$ | D. | 6 |
分析 如图,设AC与EG交于点O,FG交AC于H.只要证明FG⊥AD,即可FG是菱形的高,求出FG即可解决问题.
解答 解:如图,设AC与EG交于点O,FG交AC于H.
∵四边形ABCD是菱形,∠BAD=120°,
易证△ABC、△ACD是等边三角形,
∴∠CAD=∠B=60°,
∵EG⊥AC,
∴∠GOH=90°,
∵∠EGF=∠B=60°,
∴∠OHG=30°,
∴∠AGH=90°,
∴FG⊥AD,
∴FG是菱形的高,即等边三角形△ABC的高=$\frac{\sqrt{3}}{2}$×8=4$\sqrt{3}$.
故答案为4$\sqrt{3}$.
点评 本题考查翻折变换、等边三角形的判定和性质等知识,解题的关键是证明线段FG是菱形的高,记住等边三角形的高=$\frac{\sqrt{3}}{2}$a(a是等边三角形的边长),属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com