【题目】如图,△ABC的顶点分别为A(-2,3),B(-3,2),C(-1,1)
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)请在x轴上确定一点D,使点D到B、C的距离相等(要求用直尺和圆规作图,并保留作图痕迹)
【答案】(1)图略;2)图略
【解析】试题分析:
(1)根据点A、B、C的坐标可得点A1、B1、C1的坐标,由此即可在图中描出表示点A1、B1、C1的点,顺次连接这三点即可得到所求三角形;
(2)根据“到线段两端距离相等的点在线段的垂直平分线上”,作线段BC的垂直平分线,所得直线与x轴的交点即为所求的点D.
试题解析:
(1)∵点A(-2,3),B(-3,2),C(-1,1)关于轴的对称点分别是点A1、B1、C1,
∴点A1、B1、C1的坐标分别是(2,3)、(3,2)、(1,1).
由此可画出△A1B1C1如下图所示:
(2)如上图所示,作线段BC的垂直平分线,所作直线与x轴的交点即为所求的D点.
科目:初中数学 来源: 题型:
【题目】近年来,由于受国际石油市场的影响,汽油价格不断上涨.下面是小明与爸爸的对话:
小明:“爸爸,听说今年5月份的汽油价格上涨了不少啊!”
爸爸:“是啊,今年5月份每升汽油的价格是去年5月份每升汽油的价格的倍,用150元给汽车加的油量比去年少11.25升.”
小明:“今年5月份每升汽油的价格是多少呢?”
聪明的你,根据上面的对话帮小明计算一下今年5月份每升汽油的价格?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a= ;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第 组;
(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在△ABC中,E是BC边上一点,沿AE折叠,点B恰好落在AC边上的点D处,若∠BAC=60°,BE=CD,则∠AED=______ 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了让市民度过一个祥和美好的元宵节,市政府决定计划在南湖公园核心区域,现场安装小冰灯和大冰灯,已知安装5个小冰灯和4个大冰灯共需150元;安装7个小冰灯和6个大冰灯共需220元.
(1)市政府计划在当天共安装200个小冰灯和50个大冰灯,共需多少元?
(2)若承办方安装小冰灯和大冰灯的数量共300个,费用不超过4350元,则最多安装大冰灯多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(2,7) ,直线l经过A点且平行于x
轴,直线l上的动点C从A点出发以每秒4个单位的速度沿直线l运动.若在x轴上有两点D、E,
连接DB、OB,连接EC、OC,满足DB=OB,EC=OC,设点C运动时间t秒,
(1) 如图1,若动点C从A点出发向左运动,当t=1秒时,
①求线段BC的长和点E的坐标;
②求此时DE与AC的数量关系?
(2)探究:动点C在直线l运动,无论t取何值,是否都存在上述(1)②中的数量关系? 若存在,请证明;若不存在,请说明理由.
图1 图2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com