精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=17,AC=5
2
,∠CAB=45°,点O在BA上移动,以O为圆心作⊙O,使⊙O与边BC相切,切点为D,设⊙O的半径为x,四边形AODC的面积为y.
(1)求y与x的函数关系式;
(2)求x的取值范围;
(3)当x为何值时,⊙O与BC、AC都相切?
(1)如图①,过点C作CE⊥AB,垂足为E.
在Rt△ACE中,AC=5
2
,∠CAB=45°,
∴AE=CE=AC•sin45°=5
2
×
2
2
=5

∴BE=AB-AE=17-5=12,CB=
CE2+EB2
=
52+122
=13
.(2分)
∴tanB=
CE
EB
=
5
12

∵CB切⊙O于点D,
∴OD⊥BC.
OD
BD
=
x
BD
=tanB=
5
12

∴BD=
12
5
x
.(4分)
∵S四边形AODC=S△ABC-S△BOD
y=
1
2
AB•CE
-
1
2
BD•OD
=
1
2
×17×5-
1
2
12
5
x•x
=-
6
5
x2+
85
2
;(6分)

(2)过点C作CF⊥CB交AB于F.
在Rt△BCF中,CF=BC•tanB=13×
5
12
=
65
12

∴x的取值范围是0<x≤
65
12
.(9分)
说明:答案为0<x<
65
12
不扣分;

(3)当⊙O与BC、AC都相切时,
设⊙O与AC的切点为G,连接OG、OC(如图②),则OG=OD=x.
∵S△AOC+S△BOC=S△ABC
1
2
•5
2
•x+
1
2
•13•x=
1
2
•17•5

x=
85
5
2
+13
=
5
7
(13-5
2
)
.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知如图,抛物线y=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.
(1)请求出点A坐标和⊙P的半径;
(2)请确定抛物线的解析式;
(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),抛物线y=ax2-3ax+b经过A(-1,0),C(3,-4)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线L:y=kx+1(k≠0)将四边形ABCD的面积分成相等的两部分,求直线L的解析式;
(3)如图(2),过点E(1,1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNT(点M、N、T分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一座抛物线型拱桥,以桥基AB为x轴,AB的中垂线为y轴建立直角坐标系.已知桥基AB的跨度为60米,如果水位从AB处上升5米,就达到警戒线CD处,此时水面CD的宽为30
2
米,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某地一古城墙门洞呈抛物线形,已知门洞的地面宽度AB=12米,两侧距地面5米高C、D处各有一盏路灯,两灯间的水平距离CD=8米,求这个门洞的高度.(提示:选择适当的位置为原点建立直角坐标系,例如图:以AB的中点为坐标原点建立直角坐标系.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+3与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图所示,一次函数有y=-2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么这二次函数的顶点坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3米,最高3.5米的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5米.为设计这条能使上述厢式货车恰好安全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式、隧道的跨度AB和拱高OC.

查看答案和解析>>

同步练习册答案