精英家教网 > 初中数学 > 题目详情
15.在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.

分析 只要证明AB=BM=MD=DA,即可解决问题.

解答 证明:∵AB∥DM,
∴∠BAM=∠AMD,
∵△ADC是由△ABC翻折得到,
∴∠CAB=∠CAD,AB=AD,BM=DM,
∴∠DAM=∠AMD,
∴DA=DM=AB=BM,
∴四边形ABMD是菱形.

点评 本题考查翻折变换、等腰三角形的判定和性质.平行线的性质等知识,解题的关键是证明△ADM是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.
(1)试判断四边形DEFG的形状,并说明理由;
(2)填空:
①若AB=3,当CA=CB时,四边形DEFG的面积是$\frac{3}{2}$;
②若AB=2,当∠CAB的度数为75°或15°时,四边形DEFG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,二次函数y=x2+(m-3)x-3m(0<m<3)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若∠ABC=45°,
(1)求点B的坐标和m的值;
(2)已知一次函数y=kx+b,若只有当-2<x<2时,x2+(m-3)x-3m<kx+b,求这个一次函数的解析式.
(3)设P是一次函数图象上任意一点、Q是抛物线上任意一点,是否存在P、Q两点,使以B、C、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在平面直角坐标系中,点(3,-2)关于原点对称的点是(  )
A.(-3,2)B.(-3,-2)C.(3,-2)D.(3,2)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为4元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.盒中有x枚黑色棋子和y枚白色棋子,这些棋子除颜色外无其他差别.若从盒中随机取出一枚棋子,则它是黑色棋子的概率是$\frac{3}{8}$;若往盒中再放进10枚黑色棋子,则取得黑色棋子的概率变为$\frac{1}{2}$,则x+y的值是(  )
A.38B.40C.42D.30

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.2017年5月14日首届“一带一路”国际高峰论坛在中国北京召开,来自130多个国家的约1 500名各界贵宾出席论坛.用科学记数法表示1 500是(  )
A.15×102B.1.5×102C.1.5×103D.0.15×104

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.-2017的绝对值是(  )
A.-2017B.-$\frac{1}{2017}$C.2017D.$\frac{1}{2017}$

查看答案和解析>>

同步练习册答案