精英家教网 > 初中数学 > 题目详情

【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.

收集数据

从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述数据

按如下分数段整理、描述这两组样本数据:

成绩

人数

部门

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)

分析数据

两组样本数据的平均数、中位数、众数如下表所示:

部门

平均数

中位数

众数

78.3

77.5

75

78

80.5

81

得出结论:

.估计乙部门生产技能优秀的员工人数为____________;

.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)

【答案】a.240,b.乙;理由见解析.

【解析】试题(1)由表可知乙部门样本的优秀率为: ,则整个乙部门的优秀率也是,因此即可求解;

(2)观察图表可得出结论.

试题解析:如图:

整理、描述数据

按如下分数段整理 按如下分数段整理数据:

成绩

人数

部门

0

0

1

11

7

1

1

0

0

7

10

2

a.估计乙部门生产技能优秀的员工人数为400× =240(人);

b.答案不唯一,言之有理即可.

可以推断出甲部门员工的生产技能水平较高,理由如下:

①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;

②甲部门生产技能测试中,没有生产技能不合格的员工.

可以推断出乙部门员工的生产技能水平较高,理由如下:

①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;

②乙部门生产技能测试中,测试成绩的数较高,表示乙部门生产技能水平较高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小聪遇到这样一个有关角平分线的问题:如图1,在中,平分,求的长.

小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图2).

请回答:(1   三角形.

2的长为   

参考小聪思考问题的方法,解决问题:

3)如图3,已知中,平分.求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),AMN的面积为y(cm2),则y关于x的函数图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在复习课上,彭老师提出了一个问题,假如你是彭老师的学生,你能解决这个问题吗?试试吧!

命题有两边和其中一边上的中线对应相等的两个三角形全等是真命题吗?若是,请画出图形,写出已知、求证和证明:如不是,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的文字后,解答问题:

有这样一道题目:“如图,ED是△ABCBC边上的两点,ADAE   .求证△ABE≌△ACD.请根据你的理解,在题目中的空格内,把原题补充完整(添加一个适当的条件),并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AGCF.下列结论:GBC中点;②FG=FC

其中正确的是

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:在边长为4的正方形ABCD中,对角线ACBD交于点O

探究1:如图1,若点P是对角线BD上任意一点,求线段AP的长的取值范围;

探究2:如图2,若点P是△ABC内任意一点,点MN分别是AB边和对角线AC上的两个动点,则当AP的值在探究1中的取值范围内变化时,△PMN的周长是否存在最小值?如果存在,请求出△PMN周长的最小值,若不存在,请说明理由;

问题解决:如图3,在边长为4的正方形ABCD中,点P是△ABC内任意一点,且AP=4,点MN分别是AB边和对角线AC上的两个动点,则当△PMN的周长取到最小值时,直接求四边形AMPN面积的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中,∠BAC=90°AB=6,AC=8,D AC 上一点,将ABD 沿 BD 折叠,使点 A 恰好落在 BC 上的 E 处,则折痕 BD 的长是(

A.5B.C.3 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,的中点,连接,延长的延长线于点.

1)求证:△ADE△FCE.

2)若,求证:.

3)在(2)的条件下,若,则点的距离是______.(直接写出结果即可,不用写出过程)

查看答案和解析>>

同步练习册答案