【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)
【答案】a.240,b.乙;理由见解析.
【解析】试题(1)由表可知乙部门样本的优秀率为: ,则整个乙部门的优秀率也是,因此即可求解;
(2)观察图表可得出结论.
试题解析:如图:
整理、描述数据
按如下分数段整理 按如下分数段整理数据:
成绩 人数 部门 | ||||||
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 | 1 | 0 | 0 | 7 | 10 | 2 |
a.估计乙部门生产技能优秀的员工人数为400× =240(人);
b.答案不唯一,言之有理即可.
可以推断出甲部门员工的生产技能水平较高,理由如下:
①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;
②甲部门生产技能测试中,没有生产技能不合格的员工.
可以推断出乙部门员工的生产技能水平较高,理由如下:
①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;
②乙部门生产技能测试中,测试成绩的数较高,表示乙部门生产技能水平较高.
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小聪遇到这样一个有关角平分线的问题:如图1,在中,,平分,,,求的长.
小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图2).
请回答:(1)是 三角形.
(2)的长为 .
参考小聪思考问题的方法,解决问题:
(3)如图3,已知中,,平分,.求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在复习课上,彭老师提出了一个问题,假如你是彭老师的学生,你能解决这个问题吗?试试吧!
命题“有两边和其中一边上的中线对应相等的两个三角形全等”是真命题吗?若是,请画出图形,写出已知、求证和证明:如不是,请举出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的文字后,解答问题:
有这样一道题目:“如图,E、D是△ABC中BC边上的两点,AD=AE, .求证△ABE≌△ACD.请根据你的理解,在题目中的空格内,把原题补充完整(添加一个适当的条件),并写出证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③.
其中正确的是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:在边长为4的正方形ABCD中,对角线AC、BD交于点O.
探究1:如图1,若点P是对角线BD上任意一点,求线段AP的长的取值范围;
探究2:如图2,若点P是△ABC内任意一点,点M、N分别是AB边和对角线AC上的两个动点,则当AP的值在探究1中的取值范围内变化时,△PMN的周长是否存在最小值?如果存在,请求出△PMN周长的最小值,若不存在,请说明理由;
问题解决:如图3,在边长为4的正方形ABCD中,点P是△ABC内任意一点,且AP=4,点M、N分别是AB边和对角线AC上的两个动点,则当△PMN的周长取到最小值时,直接求四边形AMPN面积的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 为 AC 上一点,将△ABD 沿 BD 折叠,使点 A 恰好落在 BC 上的 E 处,则折痕 BD 的长是( )
A.5B.C.3 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,为的中点,连接、,延长交的延长线于点.
(1)求证:△ADE≌△FCE.
(2)若,求证:.
(3)在(2)的条件下,若,,,,则点到的距离是______.(直接写出结果即可,不用写出过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com