【题目】如图,四边形中,已知,,对角线平分,,,则边的长度为________.
【答案】或
【解析】
如图,作辅助线;首先证明△FBD∽△GDA,进而得到DGDF=BFAG①;设BE=λ,将①式中的线段分别用λ来表示,得到关于λ的方程,解方程即可解决问题.
解:如图,
过点D作DE⊥AB于点E;在ED上截取EF=EB,EG=EA;
连接AG,BF;则∠BFE=∠AGE=45°,
∴∠BFD=∠DGA=135°;
∵BD平分∠ABC,且∠BCD=90°,
∴DE=DC=12,BE=BC;
∵∠FBD+∠BDF=∠BDF+∠ADG=45°,
∴∠FBD=∠GDA;
∴△FBD∽△GDA,
∴=,即DGDF=BFAG;
设BE=λ,则DF=12-λ,EG=EA=10-λ;
BF=λ,AG=EG=(10-λ),
∴(λ+2)(12-λ)=(10-λ)λ,
整理得:λ2-10λ+24=0,
解得:λ=4或6,
即边BC的长度为4或6.
由勾股定理得:BD2=BC2+CD2,
∴BD=4或6
故答案为:4或6.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在x轴的正半轴上,AO=AB,∠OAB=90°,OB=12,点C、D均在边OB上,且∠CAD=45°,若△ACO的面积等于△ABO面积的,则点D的坐标为 _______ 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知二次函数中,函数与自变量的部分对应值如下表:
… | 1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 10 | 5 | 2 | 1 | 2 | 5 | … |
(1)求该二次函数的解析式;
(2)当为何值时,有最小值,最小值是多少?
(3)若,两点都在该函数的图像上,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的平面直角坐标系中,直线m上各点的横坐标都为1(记作直线x=1),A,B,C三点的坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,2).
(1)画出△ABC关于直线x=1对称的△A1B1C1并写出A1,B1,C1的坐标.
(2)若△ABC内部有一点H(﹣2,b),求点H关于直线x=a对称的点H1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2 其中正确结论的个数是( )
A. 1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.
根据以上材料,解决下列问题:
(1)求tan75°的值;
(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔.文峰塔的木塔年久倾毁,仅存塔基.1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁塔的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面文字并填空:数学课上张老师出了这样一道题:“如图,在中,,是中线,点为的中点,连接.求证:”
张老师给出了如下简要“要证,就是要证线段的倍分问题,所以有两个思路,思路一:找,故取的中点,连接,只要证即可.这就将证明线段倍分问题______为证明线段相等问题,只要证出______,则结论成立.思路二:变为,因为需要找到,于是延长至点,使,只要证______即可.连接,若证出____________则结论成立.”你认为在现阶段可以用思路______来完成这个证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com