精英家教网 > 初中数学 > 题目详情

【题目】我国每年的总用水主要包括四大方面:农业用水、工业用水、生活用水、其他用水. 2017年,我国农业用水量约亿(占总用水量的),工业用水量约为亿,生活用水量具体见下表.

2019-2017年全国生活用水量表(单位:亿

年份

2009

2010

2011

2012

2013

2014

2015

2016

2017

用水量

12017年全国总用水量约为 亿,其他用水约为 亿.

2)根据“2019-2017年全国生活用水量表,在平面直角坐标系中描出表中各对数值所对应的点(其中横坐标表示年份,纵坐标表示用水量)可发现,这些点近似的落在某条直线上.

①用靠近尽可能多点的直线来表示用水量的这种趋势,请在上图中画出这条直线;

②根据所画的直线,估计2018年全国生活用水量,并说明理由.

【答案】1,;(2)①见详解;②估计2018年的全国生活用水量约为亿,理由见详解

【解析】

1)根据农业用水量约亿(占总用水量的)求出总用水量,再求其它用水量即可;

(2)①根据要求画图即可;②根据所画的直线,估计2018年全国生活用水量即可,答案不唯一.

:(1)3660÷=,

6100-3660-1401-750=

故答案为,.

(2) ①如图,画图:

②答案不唯一, :估计2018年的全国生活用水量约为亿.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y2x+6x轴于A,交y轴于B

1)直接写出A      ),B      );

2)如图1,点E为直线yx+2上一点,点F为直线yx上一点,若以ABEF为顶点的四边形是平行四边形,求点EF的坐标

3)如图2,点Cmn)为线段AB上一动点,D(﹣7m0)在x轴上,连接CD,点MCD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备

后,乙组的工作效率是原来的2倍.两组各自加工零件的数量()与时间()的函数图

象如图所示.

1)求甲组加工零件的数量y与时间之间的函数关系式.(2分)

2)求乙组加工零件总量的值.(3分)

3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线ykx+k2经过点(mn+1)和(m+12n+3),且﹣2k0,则n的取值范围是(  )

A. 2n0B. 4n<﹣2C. 4n0D. 0n<﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题

1)甲登山的速度是每分钟  米;乙在A地提速时,甲距地面的高度为  米;

2)若乙提速后,乙的速度是甲登山速度的3倍;

求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;

乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;

3)当x为多少时,甲、乙两人距地面的高度差为80米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF在矩形的边ADBC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G

1)画出四边形ABFE关于直线EF对称的图形;

2)若∠FDC16°,直接写出∠GEF的度数为   

3)若BC4CD3,写出求线段EF长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,则DM的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点EEFAB交边AC于点F,射线ED交射线AC于点G

(1)求证:EFG∽△AEG

(2)请探究线段AFFG的倍数关系,并证明你的结论。

(3)设FG=xEFG的面积为y,求y关于x的函数解析式,并直接写出x的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:

产品资源

矿石(吨)

10

4

煤(吨)

4

8

生产1吨甲产品所需成本费用为4000元,每吨售价4600元;

生产1吨乙产品所需成本费用为4500元,每吨售价5500元,

现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y.

(1)写出mx之间的关系式

(2)写出yx之间的函数表达式,并写出自变量的范围

(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案