精英家教网 > 初中数学 > 题目详情

如图,△ABC的两条高ADBE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.

解:(1)∵ ADBC,∴ ∠ADC=∠ADB=90°.

BEAC,∴ ∠BEA=∠BEC=90°.

∴ ∠DBH+C=90°,∠DAC+∠C=90°,

∴ ∠DBH=∠DAC.

(2)∵ ∠DBH=∠DAC(已证),

BDH=∠CDA=90°(已证),

AD=BD(已知),

∴△BDH≌△ADC(ASA).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的两条高BD和CE相交于点O,若△DOE的面积为2,△BOC的面积为6,那么cosA=(  )
A、
1
3
B、
1
2
C、
3
3
D、
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC的两条高BE、CD相交于点O,且OB=OC,求证:△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的两条中线BG、CD相交于点O,点E、F分别是BO、CO的中点.
(1)说明:四边形DEFG是平行四边形;
(2)连接AO,当线段AO与BC满足怎样的位置关系时,四边形DEFG为矩形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的两条角平分线BD、CE交于O,且∠A=60°,则下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=
6
6

查看答案和解析>>

同步练习册答案