精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,AB是半圆的直径,AB=10,梯形ABCD内接于半圆,CE∥AD交AB于E,BE=2,求∠A的余弦值.
分析:根据平行线所夹的弧相等得到弧AD=弧BC,再根据在同圆中弧相等弦相等得到AD=BC,则四边形AECD为平行四边形,得到CD=AE=AB-BE=8.设圆心为O,作OG⊥CD于G,连OC,根据垂径定理得到DG=CG=4,利用勾股定理计算出OG,作DF⊥OA于F,则DF=OG=3,利用等腰梯形的性质计算出AF,再根据勾股定理求出AD,最后利用余弦的定义求解即可.
解答:解:连OD,精英家教网如图,
∵四边形ABCD为梯形,
∴CD∥AB,
∴∠AOD=∠ODC,∠BOC=∠OCD,
而∠ODC=∠OCD,
∴∠AOD=∠BOC,
∴弧AD=弧BC,
∴AD=BC
又∵CE∥AD,
∴四边形AECD为平行四边形,
∴CD=AE=AB-BE=8
设圆心为O,作OG⊥CD于G,连OC,
∴DG=CG=4.
∴OG=
OC2-CG2
=3.
作DF⊥OA于F,则DF=OG=3,
AF=OA-OF=OA-DG=1.
∴AD=
AF2+DF2
=
10

∴∠A的余弦:cosA=
1
10
=
10
10
点评:本题考查了圆心角、弧、弦的关系;也考查了垂径定理和勾股定理以及等腰梯形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,C、D是半圆弧上的两点,E是AB上除O外的一点,AC与DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)写出“以①②③中的任意两个为条件,推出第三个(结论)”的一个正确命题,并加以证明;
(2)“以①②③中的任意两个为条件,推出笫三个(结论)”可以组成多少个正确的命题?(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•沈阳)已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=-
2
x2+mx+n的图象经过A,C两点.
(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2
2
+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年吉林省长春市外国语学校九年级(上)期中数学试卷(解析版) 题型:解答题

已知:如图,AB为⊙O的直径,C、D是半圆弧上的两点,E是AB上除O外的一点,AC与DE相交于F.①,②DE⊥AB,③AF=DF.
(1)写出“以①②③中的任意两个为条件,推出第三个(结论)”的一个正确命题,并加以证明;
(2)“以①②③中的任意两个为条件,推出笫三个(结论)”可以组成多少个正确的命题?(不必说明理由)

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《圆》(09)(解析版) 题型:解答题

(2003•绵阳)已知:如图,AB为⊙O的直径,C、D是半圆弧上的两点,E是AB上除O外的一点,AC与DE相交于F.①,②DE⊥AB,③AF=DF.
(1)写出“以①②③中的任意两个为条件,推出第三个(结论)”的一个正确命题,并加以证明;
(2)“以①②③中的任意两个为条件,推出笫三个(结论)”可以组成多少个正确的命题?(不必说明理由)

查看答案和解析>>

科目:初中数学 来源:2003年四川省绵阳市中考数学试卷(解析版) 题型:解答题

(2003•绵阳)已知:如图,AB为⊙O的直径,C、D是半圆弧上的两点,E是AB上除O外的一点,AC与DE相交于F.①,②DE⊥AB,③AF=DF.
(1)写出“以①②③中的任意两个为条件,推出第三个(结论)”的一个正确命题,并加以证明;
(2)“以①②③中的任意两个为条件,推出笫三个(结论)”可以组成多少个正确的命题?(不必说明理由)

查看答案和解析>>

同步练习册答案