【题目】 如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.
(1)画出该平面直角坐标系与△A'B'C';
(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.
【答案】(1)详见解析;(2)图详见解析,点P的坐标为(0,1),PC+PB'的最小值为2.
【解析】
(1)根据点A的坐标找到坐标原点并建立坐标系,然后分别找到A、B、C关于y轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C'即可;
(2)直接利用轴对称求最短路线的方法、利用待定系数法求一次函数的解析式以及勾股定理得出答案.
解:(1)根据点A的坐标找到坐标原点并建立坐标系,然后分别找到A、B、C关于y轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C',如图所示:△A'B'C'即为所求;
(2)如图所示:BC与y轴交于点P,根据对称的性质可得PB= PB'
∴PC+PB'=PC+PB=BC,根据两点之间线段最短,此时PC+PB'最小,且最小值即为BC的长
设直线BC的解析式为y=kx+b
将B、C坐标代入,得
解得:
∴直线BC的解析式为
当x=0时,y=1
∴点P的坐标为:(0,1),
PC+PB'的最小值为:=2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C
(1)求抛物线的解析式;
(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.
①当t为何值时,矩形PQNM的面积最小?并求出最小面积;
②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象过点(3,0)、(-1,0).
(1)求二次函数的解析式;
(2)如图,二次函数的图象与轴交于点,二次函数图象的对称轴与直线交于点,求点的坐标;
(3)在第一象限内的抛物线上有一点,当的面积最大时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将某种商品的售价从原来的每件元经两次调价后调至每件元.
(1)若该商店两次调价的降价率相同,求这个降价率;
(2)经调查,该商品每降价元,即可多销售件.若该商品原来每月可销售件,那么两次调价后,每月可销售该商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.
(1)求点A的坐标;
(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;
(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1,x2是原方程的两根,且,求m的值,并求出此时方程的两根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地直接的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com