【题目】如图,在四边形ABCD中,AD∥BC, ∠B﹦90°,AB﹦8㎝,AD﹦24㎝,BC﹦26㎝,点p从点A出发,以1㎝/s的速度向点D运动;点Q从点C同时出发,以3㎝/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动. 设运动时间为t s.
(1)t为何值时,四边形PQCD为平行四边形?
(2)t为何值时,四边形PQCD为等腰梯形?(等腰梯形的两腰相等,两底角相等)
【答案】(1)当t=6时,四边形PQCD是平行四边形.(2)经过7s四边形PQCD是等腰梯形.
【解析】试题分析: (1)根据题意可得PA=t,CQ=3t,则PD=AD-PA=24-t,当PD=CQ时,四边形PQCD为平行四边形,可得方程24-t=3t,解此方程即可求得答案;
(2)过点D作DE⊥BC,则CE=BC-AD=2cm当CQ-PD=4时,四边形PQCD是等腰梯形.即3t-(24-t)=4,求出t的值即可.
试题解析:
(1)运动时间为t s.
AP= t ,PD=24-t,CQ=3t,
经过ts四边形PQCD平行四边形
此时:PD=CQ
∴24-t=3t
解得t=6.
当t=6时,四边形PQCD是平行四边形.
(2)如图,过点D作DE⊥BC,
则CE=BC-AD=2cm.
当CQ-PD=4时,四边形PQCD是等腰梯形.
即3t-(24-t)=4
∴t=7.
∴经过7s四边形PQCD是等腰梯形.
点睛: 此题主要考查了平行四边形、等腰梯形的判定与性质应用,要求学生掌握对各种图形的认识,同时学会数形结合的数学解题思想.
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是___________________它是_______命题(填“真”或“假”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)问甲、乙在数轴上的哪个点相遇?
(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?.
(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com