精英家教网 > 初中数学 > 题目详情
如图,在⊙O中,弦AB与弦CD相交于点E.
求证:
AC
DB
=
AE
DE
分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠C=∠B,又由对顶角相等,易证得△AEC∽△DEB,根据相似三角形的对应边成比例,即可证得结论.
解答:证明:∵∠C与∠B是
AD
对的圆周角,
∴∠C=∠B,
∵∠AEC=∠DEB…(2分)
∴△AEC∽△DEB,…(3分)
AC
DB
=
AE
DE
.…(5分)
点评:此题考查了相似三角形的判定与性质与圆周角定理.此题比较简单,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,在⊙O中,弦BC∥半径OA,AC与OB相交于M,∠C=20°,则∠AMB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙M中,弦AB所对的圆心角为120度,已知圆的半径为2cm,并建立如图所示的直角坐精英家教网标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)设点P是⊙M上的一个动点,当△PAB为Rt△PAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB=BC=CD,且∠ABC=140°,则∠AED=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC∽△PDB;
(2)当
AC
DB
为何值时,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步练习册答案