精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
(1)30°;(2)证明见解析.

试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.
(2)由ASA证明△ACD≌△ECD来推知DA=DE.
试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.
又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.
(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD="90°." ∴∠ACD=∠ECD.
在△ACD与△ECD中,∵,∴△ACD≌△ECD(SAS).
∴DA=DE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠CEF=75°,CF=,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

面给出的三块正方形纸板的边长都是60cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.
(1)包装礼盒的六个面由六个矩形组成(如图1),请画出对应的设计图.
                
图1
(2)包装礼盒的上盖由四个全等的等腰直角三角形组成(如图2),请画出对应的设计图.
                   
图2               
(3)包装礼盒的上盖是双层的,由四个全等的矩形组成(如图3),请画出对应的设计图.
  
图3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是两个形状相同的新月形图案,则x的值为(  )
A.6B.10C.12D.18

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

长为9,6,5,4的四根木条,选其中三根组成三角形,选法有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在某一时刻,测得一根高为m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为              m.

查看答案和解析>>

同步练习册答案