精英家教网 > 初中数学 > 题目详情
如图,在△AOB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线;
(2)求证:ABCD.
(1)证明:连接OE,
∵OA=OB,E为AB的中点,
∴OE⊥AB,
∵OE是半径,
∴AB是⊙O的切线.

(2)证明:∵OA=OB,
∴∠A=∠B=30°,
∴∠O=180°-30°-30°=120°,
∵OC=OD,
∴∠OCD=∠ODC=
1
2
(180°-∠AOB)=30°,
∴∠OCD=∠A,
∴CDAB.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,割线PAB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,PA:AB=1:2,则AB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若BD=2,DC=4,求AE和BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE丄CB,垂足为E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)已知CD=4,CE=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦ADOC,弦DF⊥AB于点G.
(1)求证:点E是
BD
的中点;
(2)求证:CD是⊙O的切线;
(3)若sin∠BAD=
4
5
,⊙O的半径为5,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB切⊙O于B,割线ACD经过圆心O,若∠BCD=70°,则∠A的度数为(  )
A.20°B.50°C.40°D.80°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、CD是⊙O的两条平行弦,BEAC交CD于E,过A点的切线交DC延长线于P,若AC=3
2
,则PC•CE的值是(  )
A.18B.6C.6
2
D.9
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为(  )
A.5B.10C.7.5D.4

查看答案和解析>>

同步练习册答案