【题目】如图,在Rt△ABC中,BAC 90o,D是BC的中点,E是AD的中点,过点A作AF//BC 交 BE的延长线于点F,连接CF.
(1)求证:AD=AF.
(2)当AB=AC=时,求四边形ADCF 的面积.
【答案】(1)证明见解析(2)16
【解析】分析:(1)E是AD的中点,AF∥BC,,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得 即可证得:;
证明四边形ADCF为正方形,根据正方形的面积公式进行计算即可.
详解:(1)证明:∵AF∥BC,
∴∠EAF=∠EDB,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEB中,
∴△AEF≌△DEB(ASA),
∴AF=BD,
∵在△ABC中,,AD是中线,
∴
∴AD=AF;
(2)∵
∴
∵AF//BC,
∴四边形ADCF为平行四边形
∵,
∴平行四边形ADCF为菱形,
∵,
D是BC的中点,
∴四边形ADCF为正方形
∵ AB=AC=,
∴ BC=8,
∴ CD=4,
∴正方形ADCF的面积为16
科目:初中数学 来源: 题型:
【题目】对于一次函数y=-2x+4,下列结论错误的是( )
A. 函数的图象与x轴的交点坐标是
B. 函数值随自变量的增大而减小
C. 函数的图象不经过第三象限
D. 函数的图象向下平移4个单位长度得的图象
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD中,∠BAD=∠BDC=90°,BD2=ADBC.
(1)求证:AD∥BC;
(2)过点A作AE∥CD交BC于点E.请完善图形并求证:CD2=BEBC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:)如下:
,,,,,,
问:(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为(包括),超过部分每千米1.2元,问小李这天上午共得车费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料阅读;
小明偶然发现线段AB的端点A的坐标为(1,2),端点B的坐标为(3,4),则线段AB中点的坐标为(2,3),通过进一步的探究发现在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).
知识运用:
如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为 .
能力拓展:
在直角坐标系中,有A(﹣1,2)、B(3,4)、C(l,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图像交于A(1,12)和B(6,2)两点。点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图像于点M、N,则四边形PMON面积的最大值是( )
A. B. C. 6 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接2018年中考,我校对九年级学生进行了一次数学模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如图所示的两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)求样本中表示成绩类别为“中”的人数,并将条形统计图补充完整;
(3)我校九年级共有700人参加了这次数学考试,请估计我校九年级共有多少名学生的数学成绩可以达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形OABC在如图所示平面直角坐标系中,点B的坐标为(4,3),连接AC.动点P从点B出发,以2cm/s的速度,沿直线BC方向运动,运动到C为止(不包括端点B、C),过点P作PQ∥AC交线段BA于点Q,以PQ为边向下作正方形PQMN,设正方形PQMN与△ABC重叠部分图形面积为S(cm2),设点P的运动时间为t(s).
(1)请用含t的代数式表示BQ长和N点的坐标;
(2)求S与t之间的函数关系式,并指出t的取值范围;
(3)如图2,点G在边OC上,且OG=1cm,在点P从点B出发的同时,另有一动点E从点O出发,以2cm/s的速度,沿x轴正方向运动,以OG、OE为一组邻边作矩形OEFG.试求当点F落在正方形PQMN的内部(不含边界)时t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面上有点A、点O和直线PQ,其中网格正方形的边长为1个单位,在网格中完成下列画图.(不必写出画法,保留画图痕迹,并写出结论)
(1)将点A向右平移3个单位可到达点B,再向上平移2个单位可到达点C,标出点B、点C,并联结AB、BC和AC,画出三角形ABC;
(2)画出三角形ABC关于直线PQ的轴对称的图形;
(3)画出三角形ABC关于点O的中心对称的图形.
结论:
(1) ;
(2)三角形 是三角形ABC关于直线PQ的轴对称的图形;
(3)三角形 是三角形ABC关于点O的中心对称的图形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com