精英家教网 > 初中数学 > 题目详情
已知二次函数y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.
(1)∵二次函数y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2时的函数值相等,
∴代入得:0+0+
3
2
=4(t+1)+4(t+2)+
3
2

解得:t=-
3
2

∴y=(-
3
2
+1)x2+2(-
3
2
+2)x+
3
2
=-
1
2
x2+x+
3
2

∴二次函数的解析式是y=-
1
2
x2+x+
3
2


(2)把A(-3,m)代入y=-
1
2
x2+x+
3
2
得:m=-
1
2
×(-3)2-3+
3
2
=-6,
即A(-3,-6),
代入y=kx+6得:-6=-3k+6,
解得:k=4,
即m=-6,k=4.

(3)由题意可知,点B、C间的部分图象的解析式是y=-
1
2
x2+x+
3
2
=-
1
2
(x2-2x-3)=-
1
2
(x-3)(x+1),-1≤x≤3,
则抛物线平移后得出的图象G的解析式是y=-
1
2
(x-3+n)(x+1+n),-n-1≤x≤3-n,
此时直线平移后的解析式是y=4x+6+n,
如果平移后的直线与平移后的二次函数相切,
则方程4x+6+n=-
1
2
(x-3+n)(x+1+n)有两个相等的实数解,
即-
1
2
x2-(n+3)x-
1
2
n2-
9
2
=0有两个相等的实数解,
判别式△=[-(n+3)]2-4×(-
1
2
)×(-
1
2
n2-
9
2
)=6n=0,
即n=0,
∵与已知n>0相矛盾,
∴平移后的直线与平移后的抛物线不相切,
∴结合图象可知,如果平移后的直线与抛物线有公共点,
则两个临界的交点为(-n-1,0),(3-n,0),
则0=4(-n-1)+6+n,
n=
2
3

0=4(3-n)+6+n,
n=6,
即n的取值范围是:
2
3
≤n≤6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC=4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)
(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;
(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,
3
),点B的坐标(-2,0),点O为原点.
(1)求过点A,O,B的抛物线解析式;
(2)在x轴上找一点C,使△ABC为直角三角形,请直接写出满足条件的点C的坐标;
(3)将原点O绕点B逆时针旋转120°后得点O′,判断点O′是否在抛物线上,请说明理由;
(4)在x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点E,线段OE把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOE面积比为2:3,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=
3
3
x+b
经过点B(-
3
,2),且与x轴交于点A.将抛物线y=
1
3
x2
沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)直线AB交抛物线y=
1
3
x2
的右侧于点D,问点B是AD中点吗?试说明理由;
(3)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F.当线段EFx轴时,求平移后的抛物线C对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2口口少•荆门)9开4向上4抛物线与x轴交于g(m-2,口),B(m+2,口)两点,记抛物线顶点为C,且gC⊥BC.
(你)若m为常数,求抛物线4解析式;
(2)若m为小于口4常数,那么(你)中4抛物线经过怎么样4平移可以使顶点在坐标原点;
(右)设抛物线交三轴正半轴于下点,问是否存在实数m,使得△BO下为等腰三角形?若存在,求出m4值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=4x-
1
2
x2
刻画,斜坡可以用一次函数y=
1
2
x
刻画.
(1)求小球到达的最高点的坐标;
(2)小球的落点是A,求点A的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等边三角形的边长为x(cm),则此三角形的面积S(cm2)关于x的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案