精英家教网 > 初中数学 > 题目详情
如图,Rt△AOB的两直角边OA、OB的长分别是1和3,将△AOB绕O点按逆时针方向旋转90°,至△DOC的位置.
(1)求过C、B、A三点的二次函数的解析式;
(2)若(1)中抛物线的顶点是M,判定△MDC的形状,并说明理由.
(1)由题意知,C、B、A三点的坐标分别为:C(-3,0)、B(0,3)、A(1,0);
设二次函数的解析式为y=a(x-1)(x+3),依题意,有:
a(0-1)(0+3)=3,解得:a=-1
故过C、B、A三点的二次函数的解析式为y=-x2-2x+3.

(2)△MDC是等腰直角三角形,理由如下:
由(1)知,抛物线的解析式:y=-x2-2x+3=-(x+1)2+4,则M(-1,4);
易知:C(-3,0)、D(0,1),则:
MC2=(-1+3)2+(4-0)2=20,MD2=(-1-0)2+(4-1)2=10,CD2=(-3-0)2+(0-1)2=10
则MC2=MD2+CD2,且MD=CD,
因此△MDC为等腰直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线的顶点为(3,3),且点(2,-2)在抛物线上,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知在直角梯形OABC中,ABOC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,
3
),点B的坐标(-2,0),点O为原点.
(1)求过点A,O,B的抛物线解析式;
(2)在x轴上找一点C,使△ABC为直角三角形,请直接写出满足条件的点C的坐标;
(3)将原点O绕点B逆时针旋转120°后得点O′,判断点O′是否在抛物线上,请说明理由;
(4)在x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点E,线段OE把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOE面积比为2:3,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数解析式;
(2)设D为线段OC上的点,满足∠DPC=∠BAC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-
1
2
x+1
交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ABCD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MNAB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值;
(3)试判断四边形MEFN能否为正方形?若能,求出正方形MEFN的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A,B两点,与y轴相交于点C,连接BC,已知△BOC是等腰三角形.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)求四边形ACDB的面积;
(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S.
①求S与x之间的函数关系式.
②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是边长为60cm的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使A、B、C、D四个点重合于图中的点P,正好形成一个底面是正方形的长方体包装盒.
(1)若折叠后长方体底面正方形的面积为1250cm2,求长方体包装盒的高;
(2)设剪掉的等腰直角三角形的直角边长为x(cm),长方体的侧面积为S(cm2),求S与x的函数关系式,并求x为何值时,S的值最大.

查看答案和解析>>

同步练习册答案