精英家教网 > 初中数学 > 题目详情
(2012•十堰)如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF=
5
5
分析:过D作DK平行EF交CF于K,得出平行四边形DEFK,推出EF=DK,证△DCK∽△CBA,求出CK,根据勾股定理求出DK即可.
解答:解:
过D作DK平行EF交CF于K,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=∠DCB=90°,AD=BC=4,AB=CD=2,
∵AD∥BC,EF∥DK,
∴DEFK为平行四边形,
∴EF=DK,
∵EF⊥AC,
∴DK⊥AC,
∴∠DPC=90°,
∵∠DCB=90°,
∴∠CDK+∠DCP=90°,∠DCP+∠ACB=90°,
∴∠CDK=∠ACB,
∵∠DCK=∠ABC=90°,
∴△CDK∽△BCA,
CD
CK
=
BC
AB

2
CK
=
4
2

CK=1,
根据勾股定理得:EF=DK=
5

故答案为:
5
点评:本题考查了矩形性质,相似三角形的性质和判定,勾股定理,线段的垂直平分线性质的应用,关键是求出EO长,用的数学思想是方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3
3
;⑤S△AOC+S△AOB=6+
9
4
3
.其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•十堰)如图是某体育馆内的颁奖台,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•十堰)如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为(  )

查看答案和解析>>

同步练习册答案