精英家教网 > 初中数学 > 题目详情

已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.易证:△OMN是等腰直角三角形.

(1)将图(1)中△CDE绕着点C顺时针旋转90°如图(2),连接AE、BD,O、M、N仍为AB、AD、BE中点,则△OMN是等腰直角三角形的结论是否发生变化?并说明理由.
(2)若△CDE绕着点C顺时针继续旋转至图(3)所示位置时,O、M、N仍为AB、AD、BE中点,试问△OMN是等腰直角三角形的结论是否成立?(直接写出结论)

解:(1)△OMN是等腰直角三角形.
理由如下:如图,连接BD,
∵△CDE顺时针旋转90°,
∴∠ACE=∠ACB=90°,
在△BCD和△ACE中,
∴△BCD≌△ACE(SAS),
∴BD=AE,∠CBD=∠CAE,
∵O、M、N分别为AB、AD、BE中点,
∴OM∥BD且OM=BD,ON∥AE且ON=AE,
∴OM=ON,∠ABD=∠AOM,∠BAE=∠BON,
∴∠MON=180°-(∠AOM+∠BON)=180°-(∠ABD+∠BAE)=180°-(∠ABD+∠CBD+∠BAC)=180°-(∠ABC+∠BAC),
∵∠ACB=90°,
∴∠ABC+∠BAC=180°-∠ACB=180°-90°=90°,
∴∠MON=180°-90°=90°,
∴△OMN是等腰直角三角形;

(2)△OMN是等腰直角三角形的结论仍成立.
如图,连接BD、AE,证明方法与(1)相同.
分析:(1)连接BD,然后利用“边角边”证明△BCD和△ACE全等,根据全等三角形对应边相等可得BD=AE,全等三角形对应角相等可得∠CBD=∠CAE,根据三角形的中位线平行于第三边并且等于第三边的一半可得OM∥BD且OM=BD,ON∥AE且ON=AE,然后求出OM=ON,再根据两直线平行,同位角相等可得∠ABD=∠AOM,∠BAE=∠BON,然后求出∠MON=90°,根据等腰直角三角形的定义即可得解;
(2)连接BD、AE,求解方法同(1).
点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定,熟记旋转的性质,作出辅助线构造出全等三角形是解题的关键,也是本题的难点,此类题目通常都是利用同一思路求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.
求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,C、F在BE上,∠A=∠D,AB∥DE,AB=DE.
求证:BF=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图,D、E在BC上,AB=AC,AD=AE.试说明线段BD与CE相等的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F两点在BC上,BE=CF,AB∥DE,AF∥CD
(1)求证:△ABF≌△DEC;
(2)已知中的图是否为轴对称图形?
答:
(填:“是”或“否”)

查看答案和解析>>

同步练习册答案