精英家教网 > 初中数学 > 题目详情
如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.

【答案】分析:(1)已知了点A、D的坐标,可用待定系数法求出直线AD的解析式.
(2)本题的关键是求出P点的坐标.可先在直角三角形AOD中,用勾股定理求出AD的长,而后根据P点的速度及运动的时间求出AP的长,进而可求出PD的长,在直角三角形PED中,可根据PD的长和∠D的正弦和余弦值求出P点的坐标,进而可根据B、O、P三点的坐标用待定系数法求出抛物线的解析式.
(3)四边形BCEP1是个梯形,可设出P1点的坐标(设P1的横坐标,根据直线AD的解析式表示出其纵坐标),那么OE就是P1的横坐标,P1E就是P1的纵坐标,根据梯形的面积公式即可得出S与P1的横坐标的函数关系式,进而可根据函数的性质得出S的最大值以及对应的P1点的坐标.
解答:解:(1)设直线AD的解析式为y=kx+b(k≠0),

解得
解析式为:y=-

(2)因为AP=2.5,AD=5,
所以P(2,1.5),
设过B,O,P的抛物线为y=ax2+bx+c(a≠0),
将B(-3,3),O(0,0),P(2,1.5),

解得
解析式为y=x2+x.

(3)设P(x,y),
则y=-x+3
S=(y+3)×(3+x)
即S=-x2+x+9
所以P1)时,S最大=
点评:本题考查了一次函数与二次函数解析式的确定、正方形的性质、解直角三角形、图形面积的求法等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCO放在平面直角坐标系中,其中点O为坐标原点,A、C两点分别在x轴的负半轴和y轴的正半轴上,点B的坐标为(-4,4).已知点E、点F分别从A、点B同时出发,点E以每秒2个单位长度的速度在线段AB上来回运动.点F沿B→C→0方向,以每秒1个单位长度的速度向点O运动,当点F到达点O时,E、F两点都停止运动.在E、F的运动过程中,存在某个时刻,使得△OEF的面积为6.那么点E的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCO的边长为4,D为AB上一点,且BD=3,以点C为中心,把△CBD顺时针旋转90°,得到△CB1D1
(1)直接写出点D1的坐标;
(2)求点D旋转到点D1所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCO的边长是2,E是BC中点,则E点的坐标是
 
,直线AE的解析式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCO的边长为
5
,以O为原点建立平面直角坐标系,点A在x轴的负半轴上,点C在y轴的正半轴上,把正方形ABCO绕点O顺时针旋转α后得到正方形A1B1C1O(α<45°),精英家教网B1C1交y轴于点D,且D为B1C1的中点,抛物线y=ax2+bx+c过点A1、B1、C1
(1)求tanα的值;
(2)求点A1的坐标,并直接写出点B1、点C1的坐标;
(3)求抛物线的函数表达式及其对称轴;
(4)在抛物线的对称轴上是否存在点P,使△PB1C1为直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCO的边长为
5
,O为原点,BC交y轴于点D,且D为BC边的中点,抛物线y=a精英家教网x2+bx+c经过B、C且与y轴的交点为E(0,
10
3
)

(1)求点C的坐标,并直接写出点A、B的坐标;
(2)求抛物线的解析式及对称轴;
(3)探索在抛物线的对称轴上是否存在点P,使△PBC为直角三角形?若存在,直接写出所有满足条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案