精英家教网 > 初中数学 > 题目详情

【题目】如图,若要在宽AD20米的城南大道两边安装路灯,路灯的灯臂BC2米,且与灯柱AB120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?

【答案】

【解析】试题分析:延长OCAB交于点PPCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.

试题解析:解:如图,延长OCAB交于点P

∵∠ABC=120°∴∠PBC=60°∵∠OCB=A=90°∴∠P=30°AD=20米,OA=AD=10米,BC=2米,RtCPB中,PC=BCtan60°=米,PB=2BC=4米,∵∠P=PPCB=A=90°∴△PCB∽△PAOPA===米,AB=PAPB=)米.

答:路灯的灯柱AB高应该设计为()米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,的直径,点和点上的两点,过点的切线交延长线于点

Ⅰ.若,求的度数;

Ⅱ.若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数k1b为常数,k1≠0)的图象与反比例函数的图象交于点Am8)与点B42).

①求一次函数与反比例函数的解析式.

②根据图象说明,当x为何值时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以BC为直径的△ABC的外接圆,OPAC,且与BC的垂线交于点POPAB于点DBCPA的延长线交于点E

1)求证:PA是⊙O的切线;(2)若sinEPA6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;

(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=|a|x2+bx+c的图象经过A(m,n)B(0,y1)C(3m,n)D(, y2)E(2,y3),则y1y2y3的大小关系是( ).

A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物y=ax2+bx+c(b<0)与轴只有一个公共点.

(1)若公共点坐标为(20),求ac满足的关系式;

(2)A为抛物线上的一定点,直线ly=kx+1k与抛物线交于点BC两点,直线BD垂直于直线y=1,垂足为点D.k0时,直线l与抛物线的一个交点在y轴上,且ABC为等腰直角三角形.

①求点A的坐标和抛物线的解析式;

②证明:对于每个给定的实数k,都有ADC三点共线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,如果点A的坐标为(10),那么点B2019的坐标为(  )

A. 11B. C. D. (﹣11

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC为对角线,点EF分别在ABAD上,BE=DF,连接EF

1)求证:AC⊥EF

2)延长EFCD的延长线于点G,连接BDAC于点O,若BD=4tanG=,求AO的长.

查看答案和解析>>

同步练习册答案