A.平行 B.垂直 C.共线 D.平行或共线
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法.
小明:在△ABC中,延长BC到D,
∴∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).
又∵∠ACD+∠ACB=180°(平角定义),
∴∠A+∠B+∠ACB=180°(等式的性质).
小虎:在△ABC中,作CD⊥AB(如图),
∵CD⊥AB(已知),
∴∠ADC=∠BDC=90°(直角定义).
∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).
∴∠A+∠ACD+∠B+∠BCD=180°(等式的性质).
∴∠A+∠B+∠ACB=180°.
请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.
查看答案和解析>>
科目:初中数学 来源:学习周报 数学 沪科八年级版 2009-2010学年 第19~26期 总175~182期 沪科版 题型:059
在研究“三角形的三个内角和等于180°”的证明方法时,小明和小虎分别给出了下列证法:
小明:在△ABC中,延长BC到点D(如图),
所以∠ACD=∠A+∠B.(三角形的一个外角等于与它不相邻的两个内角的和)
又因为∠ACD+∠ACB=180°,(平角定义)
所以∠A+∠B+∠ACB=180°.(等量代换)
小虎:在△ABC中,过点A作AD⊥BC(如图),
所以∠ADC=∠ADB=90°.(直角定义)
所以∠DAC+∠C=90°,∠B+∠BAD=90°.(直角三角形的两锐角互余)
所以∠DAC+∠C+∠B+∠BAD=180°,
即∠BAC+∠B+∠C=180°.
请你对上述两名同学的证法给出评价,并写出一种你认为较简单的证明三角形内角和定理的方法.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.
分析 (1)利用60°角的正弦值列式计算即可得解;
(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△CFD全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;
②设BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com