精英家教网 > 初中数学 > 题目详情
如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则的值为【   】
A.1:3B.2:3C.1:4D.2:5
A。
∵DE为△ABC的中位线,∴AE=CE。
在△ADE与△CFE中,∵,∴△ADE≌△CFE(SAS)。∴SADE=SCFE
∵DE为△ABC的中位线,∴DE∥BC。∴△ADE∽△ABC,且相似比为1:2。∴SADE:SABC=1:4。
∵SADE+S四边形BCED=SABC,∴SADE:S四边形BCED=1:3。
∴SCEF:S四边形BCED=1:3。故选A。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.

(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;
(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFG为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM.是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一点(不与点A、B重合),连结CO并延长CO交⊙O于点D,连结AD.

(1)求弦长AB的长度;(结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.

(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;
(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为

A、      B、(m,n)       C、       D、 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1。求出点M的坐标并证明你的结论。

解:M(      
证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=   度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(   ),∠BDM=∠BMD(同理),
∴∠ACM= (180°-   ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM与△BDM中,
∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E。

(1)求AC、BC的长;
(2)若AC=3,连接BD,求图中阴影部分的面积(取3.14)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个命题中,属于真命题的是
A.若,则a=m
B.若a>b,则am>bm
C.两个等腰三角形必定相似
D.位似图形一定是相似图形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,添加一个条件:     ,使△ADE∽△ACB,(写出一个即可)

查看答案和解析>>

同步练习册答案