精英家教网 > 初中数学 > 题目详情
精英家教网已知:关于x的一元二次方程kx2+2x+2-k=0.
(1)若原方程有实数根,求k的取值范围;
(2)设原方程的两个实数根分别为x1,x2
①当k取哪些整数时,x1,x2均为整数;
②利用图象,估算关于k的方程x1+x2+k-1=0的解.
分析:(1)根据根的判别式列出不等式,变形为完全平方式知△≥0,二次项系数≠0,得出k的取值范围.
(2)利用求根公式求出一元二次方程的两根,两根均为整数得出k的整数值,把两根代入得出关于k的方程,转化成一次函数和反比例函数作出图象,找出交点坐标.
解答:解:(1)∵一元二次方程kx2+2x+2-k=0有实数根,
k≠0
22-4×k×(2-k)≥0

k≠0
(k-1)2≥0

∴当k≠0时,一元二次方程kx2+2x+2-k=0有实数根.

(2)①由求根公式,得x=
-1±(k-1)
k

x1=
k-2
k
=1-
2
k
,x2=-1,
要使x1,x2均为整数,
2
k
必为整数,
所以,当k取±1或±2时,x1,x2均为整数;
②将x1=1-
2
k
,x2=-1代入方程x1+x2+k-1=0中,得
2
k
=k-1

y1=
2
k
,y2=k-1,并在同一平面直角坐标系中分别画出y1=
2
k
与y2=k-1的图象(如图所示).
由图象可得,关于k的方程x1+x2+k-1=0的解为k1=-1,k2=2.
精英家教网
点评:考查一元二次方程根的判别式及求根公式,一次函数和二次函数的作图.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数.
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

同步练习册答案