精英家教网 > 初中数学 > 题目详情
(2010•拱墅区二模)如图,已知正三角形ABC的边长为6,在△ABC中作内切圆O及三个角切圆(我们把与角两边及三角形内切圆都相切的圆叫角切圆),则△ABC的内切圆O的面积为    ;图中阴影部分的面积为   
【答案】分析:连接OB,以及⊙O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙O的半径为;然后作⊙O与小圆的公切线EF,易知△BEF也是等边三角形,那么小圆的圆心也是等边△BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和即为阴影部分的面积.
解答:解:如图,连接OB、OD;设小圆的圆心为P,⊙P与⊙O的交点为G;
过G作两圆的公切线EF,交AB于E,交BC于F;
则∠BEF=∠BFE=90°-30°=60°,所以△BEF是等边三角形;
在Rt△OBD中,OD=3,∠OBD=30°,则OD=,OB=2,BG=
由于⊙P是等边△BEF的内切圆,所以点P是△BEF的内心,也是重心,
故PG=BG=
∴S⊙O=π×(2=3π,S⊙P=π×(2=π;
∴S阴影=S△ABC-S⊙O-3S⊙P=9-3π-π=9-4π;
故△ABC的内切圆O的面积为3π,图中阴影部分的面积为9-4π.
点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省杭州市拱墅区中考数学二模试卷(解析版) 题型:解答题

(2010•拱墅区二模)如图,已知正比例函数和反比例函数的图象都经过点M(-3,-1),且知点P(-1,-3)是反比例函数图象上的点:
(1)分别求出正比例函数和反比例函数的解析式;
(2)作PA⊥x轴,垂足为A,当点Q在直线MO上运动时,作QB⊥y轴,垂足为B,问:直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由;
(3)当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的?OPCQ,求?OPCQ周长的最小值以及取得最小值时点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市拱墅区中考数学二模试卷(解析版) 题型:填空题

(2010•拱墅区二模)二次函数y=-x2+2x+3的图象与x轴交于B、C两点,点D是线段BC的中点,在x轴上方的A点为抛物线上的动点,连接AD,设AD=m,当∠BAC为锐角时,m的取值范围是   

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市拱墅区中考数学二模试卷(解析版) 题型:解答题

(2010•拱墅区二模)如图,已知矩形ABCD在直线l的上方,BC在直线l上,AB=a,AD=b(a、b为常数),E是BC上的一动点(不含端点B、C),以AE为边在直线l的上方作矩形AEFG,使顶点G恰好落在射线CD上.
(1)求证:△ADG∽△ABE;
(2)过F作FH⊥l,求证:△ADG≌△EHF;
(3)连接FC,判断当点E由B向C运动时,∠FCH的大小是否总保持不变?若∠FCH的大小不变,请用含a、b的代数式表示tan∠FCH的值;若∠FCH的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市拱墅区中考数学二模试卷(解析版) 题型:解答题

(2010•拱墅区二模)小张同学所在的社会实践小组利用假期,随机调查了一个居民小区若干名居民的年龄,将调查数据绘制成不完全的扇形统计图和条形统计图(如图),请根据统计图提供的信息,解答下列问题:

(1)他们共调查了______名居民的年龄;
(2)扇形统计图中的a=______%;
(3)补全条形统计图,并注明人数;
(4)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为______%.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市拱墅区中考数学二模试卷(解析版) 题型:解答题

(2010•拱墅区二模)如图,在Rt△ABC中,已知∠ACB=90°,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边交于点D,连接CD,若CD恰好是⊙O的切线:
(1)求证:△CAD是等腰三角形;
(2)若AC=3,BC=5,求⊙O的半径r.

查看答案和解析>>

同步练习册答案