精英家教网 > 初中数学 > 题目详情
已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连结MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标.
(1)∵四边形OCBA是矩形,
∴AB=OC=3,OA=BC=2,∠B=90°.
∵M是AB的中点,
∴AM=MB=
1
2
AB=
3
2

∵把△MBC沿x轴的负方向平移OC的长度后得到△DAO,
∴DA=MB=
3
2
,∠DAO=∠B=90°,
∴点D的坐标为(-
3
2
,2);

(2)∵OC=3,BC=2,∴B(3,2).
∵抛物线经过原点,
∴设抛物线的解析式为y=ax2+bx(a≠0),
又抛物线经过点B(3,2)与点D(-
3
2
,2),
9a+3b=2
9
4
a-
3
2
b=2
,解得:
a=
4
9
b=-
2
3

∴抛物线的解析式为y=
4
9
x2-
2
3
x.
∵点P在抛物线上,
∴设点P的坐标为(x,
4
9
x2-
2
3
x).
分两种情况:
(i)若△PQO△DAO,则
PQ
DA
=
QO
AO

4
9
x2-
2
3
x
3
2
=
x
2
,解得:x1=0(舍去),x2=
51
16

∴点P的坐标为(
51
16
153
64
);
(ii)若△OQP△DAO,则
OQ
DA
=
PQ
AO

x
3
2
=
4
9
x2-
2
3
x
2
,解得:x1=0(舍去),x2=
9
2

∴点P的坐标为(
9
2
,6).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

丁丁推铅球的出手高度为1.6m,在如图所示的抛物线y=-0.1(x-k)2+2.5上,求铅球的落点与丁丁的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=kx2+2kx-3k,交x轴于A、B两点(A在B的左边),交y轴于C点,且y有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使△PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D的坐标为(-2,0).问:直线AC上是否存在点F,使得△ODF是等腰三角形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(5,0)两点,与y轴交于点B(0,5).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
8
3
x+8
上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HKPB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标.

查看答案和解析>>

同步练习册答案