分析 根据平行于同一条直线的两直线平行可得EF∥BC,再根据平行线的性质可得∠ACB+∠DAC=180°,进而可得∠ACB的度数,然后求出∠FCB的度数,再根据角平分线的性质可得∠BCE=22°.再利用平行线的性质可得答案.
解答 解:∵EF∥AD,AD∥BC,
∴EF∥BC,
∵AD∥BC,
∴∠ACB+∠DAC=180°,
∵∠DAC=116°,
∴∠ACB=64°,
∵∠ACF=20°,
∴∠FCB=∠ACB-∠ACF=44°,
∵CE平分∠BCF,
∴∠BCE=22°.
∵EF∥BC,
∴∠FEC=∠ECB,
∴∠FEC=22°.
点评 此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等,内错角相等,同旁内角互补.
科目:初中数学 来源: 题型:解答题
摸球的次数S | 150 | 200 | 500 | 900 | 1000 | 1200 |
摸到白球的频数n | 51 | 64 | 156 | 275 | 303 | 361 |
摸到白球的频率 | 0.34 | 0.32 | 0.312 | 0.306 | 0303 | 0.301 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{(-5)^{2}}$=-5 | B. | $\sqrt{3}$×$\sqrt{4}$=$\sqrt{7}$ | C. | $\sqrt{12}$÷$\sqrt{3}$=2 | D. | (-$\sqrt{3}$)2=-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1+$\sqrt{3}$ | B. | 2+$\sqrt{3}$ | C. | 2$\sqrt{3}$-1 | D. | 2$\sqrt{3}$+1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{x=1}\\{y=0}\\{z=4}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=4}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=0}\\{z=5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=4}\\{y=1}\\{z=0}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com