精英家教网 > 初中数学 > 题目详情

在△ABC和△中,下列各组条件中,不能保证:△ABC≌△的是

①AB=;②BC=;③AC=

④∠A=∠;⑤∠B=∠;⑥∠C=∠

[  ]

A.具备①②③

B.具备①②④

C.具备③④⑤

D.具备②③⑥

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H.
猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得6分.
①AC=BC,DP=DQ,∠C=∠PDQ(如图2);
②在①的条件下且点P与点B重合(如图3
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC和△EDC中,∠ACB=∠ECD=90°,BC=k•AC,CD=k•CE.
(1)如图1,当k=1时,AE与BD的数量关系是:
 
,位置关系是:
 

(2)如图2,当k≠1时,请探索AE与BD的关系,并证明;
(3)如图3,在(2)的条件下,分别在BD、AE上取点M、N,使得BD=m•MD,AE=m•NE,试探索CN与CM的关系,并证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC和△ADE中,AC=AB,AE=AD,∠BAC=∠DAE=m,CE,DB交于点F,连接AF.
(1)如图,当如图当m=60°时,猜想BD,CE的关系,并证明你的结论;
(2)在(1)的条件下,猜想线段AF,BF,CF数量关系,并证明你的结论;
(3)当m=90°时直接写出AF,BF,CF的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DBC中,已知∠ACB=∠DBC=90°,点E为BC的中点,DE⊥AB,垂足为F,且AB=DE.
(1)求证:△DBC是等腰Rt△;
(2)若BD=8cm,求AC的长;
(3)在(2)的条件下求BF的长.

查看答案和解析>>

同步练习册答案