精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC中,∠C=90°,P是斜边AB上的一个动点(不与AB重合),过P分别作PM⊥AC,PN⊥BC,△AMP的面积是S1,△PNB的面积是S2,四边形CMPN的面积是S3,S1+S2与S3之间有怎样的关系?
分析:(1)首先假设P是AB的中点时求出S1+S2=S3;(2)当P不是中点时和图形(1)比较利用平行线分线段成比例定理和矩形的面积公式求出S1+S2>S3,综合(1)(2)即可得出答案.
解答:解:S1+S2与S3之间的关系是S1+S2≥S3
理由是:(1)当P是AB的中点Q时,过Q做QF⊥BC于F,QE⊥AC于E,连接CQ,
∵∠ACB=90°,
∴QF∥AC,QE∥BC,
∴E为AC的中点,F为BC的中点,
根据等底同高的三角形的面积相等,S△AQE=S△CQE,S△CQF=S△BQF
∴S△AQE+S△BQF=S△CQE+S△CQF
即:S1+S2=S3
(2)当P不是AB的中点Q时,如图:精英家教网
∵QF⊥BC,QE⊥AC,PM⊥AC,PN⊥BC,
∴QE∥PM,PN∥QF,
PQ
AQ
=
OP
OM
PQ
BP
=
OQ
PN

∵AQ=BQ>BP,
OP
OM
OQ
PN

即:OP•PN<OQ•OM,
∴S四边形OPNF<S四边形OQEM
∴S四边形CNPM<S四边形CEQF
即:S3
1
2
S△ABC
而S△ABC=S1+S2+S3
∴S3
1
2
S△ABC=
1
2
(S1+S2+S3
∴S3<S1+S2
综合上述:S1+S2与S3之间的关系是S1+S2≥S3
答:S1+S2与S3之间的关系是S1+S2≥S3
点评:本题主要考查了面积及等积变换,平行四边形的性质和判定,三角形的面积,平行线分线段成比例定理等知识点,解此题的关键是分类讨论.题目较好,但有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案