解:(1)∵抛物线C:y=x
2+bx+c与y轴交于C(0,2),∴c=2;
依题意,抛物线C:y=x
2+bx+2与x轴交于A(x
1,0),B(x
2,0)两点,则:
x
1、x
2是方程x
2+bx+2=0的两个根,可得:x
1•x
2=2…①;
而x
1-2x
2=-3,即x
1=2x
2-3,代入①,得:(2x
2-3)x
2=2,解得 x
2=2(负值舍去)
则 x
1=1,∴A(1,0)、B(2,0);
可求得抛物线的解析式:y=x
2-3x+2.
(2)依题意,设P(

,y),已知:A(1,0)、C(0,2),有:
AP
2=y
2+

、AC
2=5、PC
2=y
2-4y+

;
若△APC是等腰三角形,有三种情况:
①AP=AC,得:
y
2+

=5,解得 y=±

;
②AP=PC,得:
y
2+

=y
2-4y+

,解得 y=

;
③AC=PC,得:
y
2-4y+

=5,解得 y=

;
∴点P的坐标为(

,

)、(

,-

)、(

,

)、(

,

)、(

,

).

(3)由(1)知:抛物线C:y=x
2-3x+2=(x-

)
2-

,向下平移6个单位后,得:
抛物线F:y=(x-

)
2-

=(x-

)
2-

-6=x
2-3x-4=(x+1)(x-4);
∴A
1(-1,0)、B
1(4,0)、C
1(0,-4).
易知,直线B
1C
1:y=x-4,过点M作MN⊥x轴,交直线B
1C
1于N,如右图;
设点M(m,m
2-3m+2),则 N(m,m-4),MN=m-4-(m
2-3m+2)=-m
2+4m,
四边形A
1C
1MB
1的面积:S=

+

=

×5×4+

×4×(-m
2+4m)=-2(m-2)
2+18;
∴存在使四边形A
1C
1MB
1面积最大的点M,且点M的坐标为(2,2),四边形的最大面积为18.
分析:(1)由点C的坐标不难得到c的值,而抛物线与x轴交于A、B两点,那么x
1、x
2必为方程x
2+bx+c=0的两根,由根与系数的关系可知x
1x
2=c,联立题干中的x
1、x
2关系式,解方程组即可求出A、B两点的坐标,再利用待定系数法确定函数的解析式.
(2)抛物线的对称轴易知,首先设出点P的坐标,从而能得到AP、CP、AC三边长,然后分:①AP=CP、②AP=AC、③CP=AC三种情况,列等式求解.
(3)先求出平移后的抛物线解析式,进一步能求出点A
1、B
1、C
1三点坐标;通过图示不难看出,四边形A
1B
1MC可分作△A
1C
1B
1、△C
1MB
1两部分,△A
1C
1B
1的面积是定值,关键是求出△C
1MB
1的面积表达式,首先过点M作x轴的垂线,交直线B
1C
1于点N,那么△B
1MC
1的面积可由(

×OB
1×MN)求得,由此求得关于四边形A
1C
1MB
1的面积与点M横坐标的函数关系式,再根据函数的性质求解即可.
点评:题目主要考查了函数解析式的确定、二次函数与一元二次方程的联系、等腰三角形的判定和性质以及图形面积的解法等知识;(3)题在不确定等腰三角形的腰和底的情况下要进行分类讨论;(4)题的解法较多,除解答部分的方法外,还可以过点M作x轴的垂线,将四边形A
1C
1MB
1分成两个三角形以及一个梯形来解等方法.