精英家教网 > 初中数学 > 题目详情
(1)如图(1),AB∥CD,探究∠BED与∠B+∠D的关系:
过点E作EM∥AB
∴∠1=
∠B
∠B

∵EM∥AB,AB∥CD
EM∥CD
EM∥CD

∴∠2=
∠D
∠D

∴∠1+∠2=∠B+∠D,即∠BED与∠B+∠D的关系为:
∠BED=∠B+∠D
∠BED=∠B+∠D

(2)如图(2),AB∥CD,类比上述方法,试探究∠E+∠G与∠B+∠F+∠D的关系,并写出推理过程;
(3)如图(3),AB∥CD,请直接写出你能得到的结论.
分析:(1)根据平行线的性质填空即可;
(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥CD,根据平行公理可得AB∥EM∥FN∥GH,然后利用两直线平行,内错角相等求解即可;
(3)根据(2)的规律求解即可.
解答:解:(1)过点E作EM∥AB,
∴∠1=∠B,
∵EM∥AB,AB∥CD,
∴EM∥CD,
∴∠2=∠D,
∴∠1+∠2=∠B+∠D,
即∠BED与∠B+∠D的关系为∠BED=∠B+∠D;

(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥CD,
∵AB∥CD,
∴AB∥EM∥FN∥GH,
∴∠1=∠B,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D,
即∠E+∠G=∠B+∠F+∠D;

(3)与(2)同理,∠B+∠F1+∠F2+∠Fn-1+…+∠D=∠E1+∠E2+…+∠En
故答案为:∠B;EM∥CD;∠D;∠BED=∠B+∠D.
点评:本题考查了平行线的性质,规律性较强,熟记性质并作辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,已知⊙P的半径OD=5,OD⊥AB,垂足是G,OG=3,则弦AB=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知A,B两点是反比例函数y=
4x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=24,BC=26.先顺次连接矩形各边中点得菱形,又顺次连接菱形各边中点得矩形,再顺次连接矩形各边中点得菱形,照此继续,…,第10次连接的图形的面积是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图是某几何体的三视图,则这个几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若∠C=30°,CD=
3
,求⊙O的半径.

查看答案和解析>>

同步练习册答案