精英家教网 > 初中数学 > 题目详情
(2002•泉州)已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分线.请你先作△ODB的角平分线DF(用尺规作图,不要求写出作法与证明,但要保留作图痕迹);再证明CE=DF.

【答案】分析:易证△DOF≌△COE(ASA),那么CE=DF.
解答:解:如图,DF就是所作的角平分线.
证明:∵∠ACO=∠BDO,
又∵∠ECO=∠ACO,∠FDO=∠BDO,
∴∠ECO=∠FDO,
又∠DOF=∠COE,OC=OD,
∴△DOF≌△COE(ASA),
∴CE=DF.
点评:本题综合考查了角平分线的性质,全等三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2002•泉州)已知抛物线y=(x-2)2-m2(常数,n>0)的顶点为P.
(1)写出抛物线的开口方向和P点的横坐标;
(2)若此抛物线与x轴的两个交点从左到右分别为A、B,并且∠APB=90°,试求△ABP的周长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•泉州)已知:直线l的解析式为y=x+m(m为常数,m≠0),点(-4,3)在直线l上.
(1)求m的值;
(2)若⊙A的圆心为原点,半径为R,并且⊙A与直线l有公共点,试求R的取值范围;
(3)当(2)中的⊙A与l有唯一公共点时,将此时的⊙A向左移动(圆心始终保持在x轴上),试求在这个移动过程中,当直线l被⊙A截得的弦的长为时圆心A的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年福建省泉州市中考数学试卷(解析版) 题型:解答题

(2002•泉州)已知:直线l的解析式为y=x+m(m为常数,m≠0),点(-4,3)在直线l上.
(1)求m的值;
(2)若⊙A的圆心为原点,半径为R,并且⊙A与直线l有公共点,试求R的取值范围;
(3)当(2)中的⊙A与l有唯一公共点时,将此时的⊙A向左移动(圆心始终保持在x轴上),试求在这个移动过程中,当直线l被⊙A截得的弦的长为时圆心A的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年福建省泉州市中考数学试卷(解析版) 题型:解答题

(2002•泉州)已知抛物线y=(x-2)2-m2(常数,n>0)的顶点为P.
(1)写出抛物线的开口方向和P点的横坐标;
(2)若此抛物线与x轴的两个交点从左到右分别为A、B,并且∠APB=90°,试求△ABP的周长.

查看答案和解析>>

科目:初中数学 来源:2002年福建省泉州市中考数学试卷(解析版) 题型:填空题

(2002•泉州)已知梯形中位线长为4,下底长为6,则梯形的上底长为   

查看答案和解析>>

同步练习册答案